Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer

被引:0
|
作者
Varnava, Yiannis [1 ]
Jakate, Kiran [9 ]
Garnett, Richard [1 ]
Androutsos, Dimitrios [1 ]
Tyrrell, Pascal N. [2 ,3 ,4 ]
Khademi, April [1 ,2 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Toronto Metropolitan Univ, Dept Elect Comp & Biomed Engn, Toronto, ON, Canada
[2] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
[3] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[4] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
[5] St Michaels Hosp, Keenan Res Ctr Biomed Sci, Unity Hlth Toronto, Toronto, ON, Canada
[6] St Michaels Hosp, Inst Biomed Engn Sci Tech iBEST, Partnership St, Toronto, ON, Canada
[7] Toronto Metropolitan Univ, Toronto, ON, Canada
[8] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[9] Unity Hlth Toronto, Toronto, ON, Canada
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Histopathology; Lymph node; Breast cancer; Deep learning; Segmentation; Generalization; NORMALIZATION; PATHOLOGISTS; EQUIVALENCE; SEPARATION; TESTS;
D O I
10.1038/s41598-024-80495-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pathology provides the definitive diagnosis, and Artificial Intelligence (AI) tools are poised to improve accuracy, inter-rater agreement, and turn-around time (TAT) of pathologists, leading to improved quality of care. A high value clinical application is the grading of Lymph Node Metastasis (LNM) which is used for breast cancer staging and guides treatment decisions. A challenge of implementing AI tools widely for LNM classification is domain shift, where Out-of-Distribution (OOD) data has a different distribution than the In-Distribution (ID) data used to train the model, resulting in a drop in performance in OOD data. This work proposes a novel clustering and sampling method to automatically curate training datasets in an unsupervised manner with the aim of improving model generalization abilities. To evaluate the generalization performance of the proposed models, we applied a novel use of the Two One-sided Tests (TOST) method. This method examines whether the performance on ID and OOD data is equivalent, serving as a proxy for generalization. We provide the first evidence for computing equivalence margins that are data-dependent, which reduces subjectivity. The proposed framework shows the ensembled models constructed from models that generalized across both tumor and normal patches enhanced performance, achieving an F1 score of 0.81 for LNM classification on unseen ID and OOD samples. Interactive viewing of slide-level segmentations can be accessed on PathcoreFlow (TM) through https://web.pathcore.com/folder/18555?s=QTJVHJuhrfe5. Segmentation models are available at https://github.com/IAMLAB-Ryerson/OOD-Generalization-LNM.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Stable Learning for Out-Of-Distribution Generalization
    Zhang, Xingxuan
    Cui, Peng
    Xu, Renzhe
    Zhou, Linjun
    He, Yue
    Shen, Zheyan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5368 - 5378
  • [22] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [23] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [25] Predicting Factors of Nonsentinel Lymph Node Metastasis in Breast Cancer Patients with Sentinel Lymph Node Metastasis
    Park, Jae Young
    Park, Keun Myoung
    Park, Jeong Mi
    Lee, Kang Yeun
    Moon, Youn Hee
    Kim, Sei Joong
    Kim, Joon Mee
    Cho, Young Up
    Kim, Jang Yong
    Choe, Yun-Mee
    Choi, Sun Keun
    Heo, Yoon-Seok
    Lee, Keon-Young
    Ahn, Seung-Ik
    Hong, Kee Chun
    Shin, Seok-Hwan
    Kim, Kyung Rae
    JOURNAL OF THE KOREAN SURGICAL SOCIETY, 2010, 79 (01): : 20 - 26
  • [26] Prediction of axillary lymph node metastasis in breast cancer
    Krishnan, L
    Jewell, WR
    Mayo, MS
    Tawfik, OW
    Krishnan, EC
    Norris, D
    RADIOLOGY, 2000, 217 : 153 - 153
  • [27] Lymph Node Metastasis Pattern in primary Breast Cancer
    Voppichler, J.
    Borm, K. J.
    Dusberg, M.
    Oechsner, M.
    Combs, S. E.
    Duma, M. N.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2018, 194 : S39 - S39
  • [28] No common denominator for breast cancer lymph node metastasis
    Weigelt, B
    Wessels, LFA
    Bosma, AJ
    Glas, AM
    Nuyten, DSA
    He, YD
    Dai, H
    Peterse, JL
    van't Veer, LJ
    BRITISH JOURNAL OF CANCER, 2005, 93 (08) : 924 - 932
  • [29] No common denominator for breast cancer lymph node metastasis
    B Weigelt
    L F A Wessels
    A J Bosma
    A M Glas
    D S A Nuyten
    Y D He
    H Dai
    J L Peterse
    L J van't Veer
    British Journal of Cancer, 2005, 93 : 924 - 932
  • [30] Sentinel Lymph Node Metastasis in Microinvasive Breast Cancer
    Mattia Intra
    Stefano Zurrida
    Fausto Maffini
    Angelica Sonzogni
    Giuseppe Trifirò
    Roberto Gennari
    Paolo Arnone
    Guillermo Bassani
    Antonio Opazo
    Giovanni Paganelli
    Giuseppe Viale
    Umberto Veronesi
    Annals of Surgical Oncology, 2003, 10 : 1160 - 1165