On the solvability of the Cauchy problem for a thermal-electrical model

被引:0
|
作者
Artemeva, M. V. [1 ,2 ]
Korpusov, M. O. [1 ,2 ]
Panin, A. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow, Russia
[2] PeoplesFriendship Univ Russia, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
nonlinear Sobolev-type equations; local solvability; nonlinear capacity; blow-up time estimates; BLOW-UP; NONLINEAR-SYSTEM; EQUATIONS;
D O I
10.1134/S0040577925020011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a thermal-electrical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional model of semiconductor heating in an electric field. We prove the existence of a classical solution nonextendable in time for the corresponding Cauchy problem.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条