A law limit theorem for a sequence of random variables

被引:0
|
作者
Maslouhi, M. [1 ]
机构
[1] IbnTofail Univ, Kenitra 14000, Morocco
关键词
Law of a random variable; Levy's Theorem; Hankel transform; Gaussian distribution; Cauchy distribution; Box-Muller method; GENERATION;
D O I
10.1007/s43670-025-00101-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An application of Levy's continuity theorem and Hankel transform allow us to establish a law limit theorem for the sequence Vn=f(U)sin(nU)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_n=f(U)\sin (n U)$$\end{document}, where U is uniformly distributed in (0, 1) and f a given function. Further, we investigate the inverse problem by specifying a limit distribution and look for the suitable function f ensuring the convergence in law to the specified distribution. Our work recovers and extends existing similar works, in particular we make it possible to sample from known laws including Gaussian and Cauchy distributions.
引用
收藏
页数:12
相关论文
共 50 条