A functional limit theorem for random variables with strong residual dependence

被引:0
|
作者
Rusakov, OV [1 ]
机构
[1] ST PETERSBURG STATE UNIV,DEPT MECH & MATH,ST PETERSBURG 198904,RUSSIA
关键词
strong dependence; functional limit theorem; Ornstein-Uhlenbeck process; Gaussian noise model;
D O I
10.1137/1140080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To describe a certain model of strongly dependent noise, we introduce the scheme of summation of independent random variables with random replacements. The scheme generates a strictly stationary Markov sequence of random variables. We say that random variables from this sequence have ''residual dependence.'' In the paper, a Kolmogorov-type inequality for elements of this sequence is given. A functional limit theorem is proved for random polygons generated by these elements. The limiting process turns out to be an Ornstein-Uhlenbeck process.
引用
收藏
页码:714 / 728
页数:15
相关论文
共 50 条