Carleson Measures for Weighted Harmonic Mixed-Norm Spaces and Toeplitz Operators

被引:0
|
作者
Arsenovic, Milos [1 ]
Savkovic, Ivana [2 ]
机构
[1] Univ Belgrade, Dept Math, Studentski Trg 16, Belgrade, Serbia
[2] Univ Banja Luka, Fac Mech Engn, Bulevar Vojvode Stepe Stepanovica 71, Banja Luka, Republic Of Srp, Bosnia & Herceg
关键词
Vanishing Carleson measures; Toeplitz operators; Mixed norm spaces; BERGMAN SPACES;
D O I
10.1007/s11785-024-01654-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize Carleson measures for weighted harmonic mixed norm spaces B alpha p,q(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{p,q}_\alpha (\Omega )$$\end{document} of harmonic functions on smoothly bounded domains in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} for a certain range of parameters p, q and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. This result extends earlier characterization obtained by the second author to a wider range of parameters. Also, we characterize vanishing Carleson measures for these spaces and apply these results to obtain criteria for boundedness and compactness of Toeplitz operators on weighted mixed norm spaces.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Carleson Measures and Toeplitz Operators on Small Bergman Spaces on the Ball
    Le, Van An
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 211 - 229
  • [32] Toeplitz Operators and Carleson Measures on Generalized Bargmann–Fock Spaces
    Alexander P. Schuster
    Dror Varolin
    Integral Equations and Operator Theory, 2012, 72 : 363 - 392
  • [33] TOEPLITZ OPERATORS ON WEIGHTED HARMONIC BERGMAN SPACES
    Wang, Zipeng
    Zhao, Xianfeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 808 - 842
  • [34] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Lu, Y.
    Zhou, J.
    Wang, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (04): : 226 - 242
  • [35] Continuity of pseudodifferential operators on mixed-norm Lebesgue spaces
    Nenad Antonić
    Ivan Ivec
    Ivana Vojnović
    Monatshefte für Mathematik, 2019, 190 : 657 - 674
  • [36] Operators on Mixed-Norm Amalgam Spaces via Extrapolation
    Y. Lu
    J. Zhou#
    S. Wang
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 226 - 242
  • [37] Decomposition and Traces of Weighted Mixed-Norm Besov Spaces
    Michael Frazier
    La Matematica, 2024, 3 (4): : 1320 - 1359
  • [38] PRODUCT-CONVOLUTION OPERATORS AND MIXED-NORM SPACES
    BUSBY, RC
    SMITH, HA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 263 (02) : 309 - 341
  • [39] Continuity of pseudodifferential operators on mixed-norm Lebesgue spaces
    Antonic, Nenad
    Ivec, Ivan
    Vojnovic, Ivana
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (04): : 657 - 674
  • [40] PRODUCTS OF MULTIPLICATION, COMPOSITION AND DIFFERENTIATION OPERATORS FROM MIXED-NORM SPACES TO WEIGHTED-TYPE SPACES
    Zhang, Fang
    Liu, Yongmin
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (06): : 1927 - 1940