Carleson Measures for Weighted Harmonic Mixed-Norm Spaces and Toeplitz Operators

被引:0
|
作者
Arsenovic, Milos [1 ]
Savkovic, Ivana [2 ]
机构
[1] Univ Belgrade, Dept Math, Studentski Trg 16, Belgrade, Serbia
[2] Univ Banja Luka, Fac Mech Engn, Bulevar Vojvode Stepe Stepanovica 71, Banja Luka, Republic Of Srp, Bosnia & Herceg
关键词
Vanishing Carleson measures; Toeplitz operators; Mixed norm spaces; BERGMAN SPACES;
D O I
10.1007/s11785-024-01654-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize Carleson measures for weighted harmonic mixed norm spaces B alpha p,q(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B<^>{p,q}_\alpha (\Omega )$$\end{document} of harmonic functions on smoothly bounded domains in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} for a certain range of parameters p, q and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. This result extends earlier characterization obtained by the second author to a wider range of parameters. Also, we characterize vanishing Carleson measures for these spaces and apply these results to obtain criteria for boundedness and compactness of Toeplitz operators on weighted mixed norm spaces.
引用
收藏
页数:23
相关论文
共 50 条