Multiple solutions for superlinear fractional p-Laplacian equations

被引:0
|
作者
Antonio Iannizzotto [1 ]
Vasile Staicu [2 ]
Vincenzo Vespri [3 ]
机构
[1] University of Cagliari,Department of Mathematics and Computer Science
[2] University of Aveiro,Department of Mathematics, CIDMA
[3] University of Florence,Center for Research and Development in Mathematics and Applications
来源
关键词
Fractional ; -Laplacian; Variational methods; Morse theory; 35A15; 35R11; 58E05;
D O I
10.1007/s42985-025-00316-3
中图分类号
学科分类号
摘要
We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.
引用
收藏
相关论文
共 50 条
  • [31] Existence and Multiplicity of Periodic Solutions to Fractional p-Laplacian Equations
    Li, Lin
    Tersian, Stepan
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 495 - 507
  • [32] Four Solutions for Fractional p-Laplacian Equations with Asymmetric Reactions
    Iannizzotto, Antonio
    Livrea, Roberto
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [33] Existence and multiplicity of solutions to a ψ-Hilfer fractional p-Laplacian equations
    Ezati, Roozbeh
    Nyamoradi, Nemat
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [34] Existence of Solutions for Asymptotically Periodic Fractional p-Laplacian Equations
    He, Shuwen
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (02): : 329 - 342
  • [35] Four Solutions for Fractional p-Laplacian Equations with Asymmetric Reactions
    Antonio Iannizzotto
    Roberto Livrea
    Mediterranean Journal of Mathematics, 2021, 18
  • [36] SYMMETRY AND NONEXISTENCE OF POSITIVE SOLUTIONS TO FRACTIONAL P-LAPLACIAN EQUATIONS
    Wu, Leyun
    Niu, Pengcheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1573 - 1583
  • [37] Existence of Nontrivial Solutions for Fractional Differential Equations with p-Laplacian
    Zhang, Li
    Wang, Fanglei
    Ru, Yuanfang
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [38] Renormalized and entropy solutions for the fractional p-Laplacian evolution equations
    Kaimin Teng
    Chao Zhang
    Shulin Zhou
    Journal of Evolution Equations, 2019, 19 : 559 - 584
  • [39] Multiple Nontrivial Solutions for a Class of p-Laplacian Equations
    Wei, Lei
    Wang, Mingxin
    Zhu, Jiang
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1153 - 1167
  • [40] Symmetry of positive solutions for Choquard equations with fractional p-Laplacian
    Ma, Lingwei
    Zhang, Zhenqiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 182 : 248 - 262