Multiple solutions for superlinear fractional p-Laplacian equations

被引:0
|
作者
Antonio Iannizzotto [1 ]
Vasile Staicu [2 ]
Vincenzo Vespri [3 ]
机构
[1] University of Cagliari,Department of Mathematics and Computer Science
[2] University of Aveiro,Department of Mathematics, CIDMA
[3] University of Florence,Center for Research and Development in Mathematics and Applications
来源
关键词
Fractional ; -Laplacian; Variational methods; Morse theory; 35A15; 35R11; 58E05;
D O I
10.1007/s42985-025-00316-3
中图分类号
学科分类号
摘要
We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.
引用
收藏
相关论文
共 50 条