Multiple solutions for superlinear fractional p-Laplacian equations
被引:0
|
作者:
Antonio Iannizzotto
论文数: 0引用数: 0
h-index: 0
机构:
University of Cagliari,Department of Mathematics and Computer ScienceUniversity of Cagliari,Department of Mathematics and Computer Science
Antonio Iannizzotto
[1
]
Vasile Staicu
论文数: 0引用数: 0
h-index: 0
机构:
University of Aveiro,Department of Mathematics, CIDMAUniversity of Cagliari,Department of Mathematics and Computer Science
Vasile Staicu
[2
]
Vincenzo Vespri
论文数: 0引用数: 0
h-index: 0
机构:
University of Florence,Center for Research and Development in Mathematics and ApplicationsUniversity of Cagliari,Department of Mathematics and Computer Science
Vincenzo Vespri
[3
]
机构:
[1] University of Cagliari,Department of Mathematics and Computer Science
[2] University of Aveiro,Department of Mathematics, CIDMA
[3] University of Florence,Center for Research and Development in Mathematics and Applications
We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(p-1)$$\end{document}-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Shaanxi Univ Technol, Sch Math & Comp Sci, Hanzhong 723000, Shaanxi, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Gao, Ting-Mei
Tang, Chun-Lei
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
North China Univ Technol, Coll Sci, Beijing 100144, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China