Multiple solutions for superlinear fractional p-Laplacian equations

被引:0
|
作者
Antonio Iannizzotto [1 ]
Vasile Staicu [2 ]
Vincenzo Vespri [3 ]
机构
[1] University of Cagliari,Department of Mathematics and Computer Science
[2] University of Aveiro,Department of Mathematics, CIDMA
[3] University of Florence,Center for Research and Development in Mathematics and Applications
来源
关键词
Fractional ; -Laplacian; Variational methods; Morse theory; 35A15; 35R11; 58E05;
D O I
10.1007/s42985-025-00316-3
中图分类号
学科分类号
摘要
We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.
引用
收藏
相关论文
共 50 条
  • [1] Nontrivial solutions of superlinear p-Laplacian equations
    Fang, Fei
    Liu, Shibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 138 - 146
  • [2] EXISTENCE OF POSITIVE SOLUTIONS FOR SUPERLINEAR p-LAPLACIAN EQUATIONS
    Gao, Ting-Mei
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] MULTIPLE SOLUTIONS FOR SUPERLINEAR p-LAPLACIAN NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (03) : 699 - 740
  • [4] GROUND STATE SOLUTIONS FOR p-SUPERLINEAR p-LAPLACIAN EQUATIONS
    Chen, Yi
    Tang, X. H.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 97 (01) : 48 - 62
  • [5] Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
    Wang, Juan
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)
  • [6] SOLUTIONS AND MULTIPLE SOLUTIONS FOR SUPERLINEAR PERTURBATIONS OF THE PERIODIC SCALAR p-LAPLACIAN
    Kyritsi, Sophia Th
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (03) : 805 - 827
  • [7] Multiple solutions for a superlinear p-Laplacian equation with concave nonlinearities
    Sun, Mingzheng
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (8-9) : 941 - 948
  • [8] PARAMETRIC p-LAPLACIAN EQUATIONS WITH SUPERLINEAR REACTIONS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2015, 24 (04): : 523 - 558
  • [9] Positive Solutions of Fractional Differential Equations with p-Laplacian
    Tian, Yuansheng
    Sun, Sujing
    Bai, Zhanbing
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [10] Multiple solutions for p-Laplacian type equations
    Kristaly, Alexandru
    Lisei, Hannelore
    Varga, Csaba
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1375 - 1381