A spatial-temporal graph attention network for protein-ligand binding affinity prediction based on molecular geometry

被引:0
|
作者
Li, Gaili [1 ]
Yuan, Yongna [1 ]
Zhang, Ruisheng [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
3D protein-ligand binding affinity; Graph convolutions networks; Global attention module; Binding affinity prediction; SCORING FUNCTIONS; NEURAL-NETWORK; AUTODOCK VINA; DOCKING;
D O I
10.1007/s00530-024-01650-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately estimating the binding strength between proteins and ligands is fundamental in the field of pharmaceutical research and innovation. Previous research has largely concentrated on 1D or 2D molecular descriptors, often neglecting the pivotal 3D features of molecules that profoundly impact drug properties and target binding. This oversight has resulted in diminished predictive performance in molecule-related analyses. A comprehensive grasp of molecular properties necessitates the integration of both local and global molecular information. In this paper, we introduce a deep-learning model, termed PLGAs, which represents molecular systems as graphs based on the three-dimensional configurations of protein-ligand complexes. PLGAs consist of two components: Graph Convolution Networks (GCN) and a Global Attention Mechanism (GAM) network. Specifically, GCNs learn both the graph structure and node attribute information, capturing local and global information to better represent node features. GAM is then used to gather interactive edges by reducing information loss and amplifying global interactions. PLGAs were tested on the standard PDBbind refined set (v.2019) and core set (v.2016). The model demonstrated a Spearman's correlation coefficient of 0.823 on the refined set and an RMSE (Root Mean Square Error) of 1.211 kcal/mol between experimental and predicted affinities on the core set, surpassing several advanced contemporary binding affinity prediction methods. We further evaluated the efficacy of various components within our model, and the marked improvements in accuracy underscore the potential of PLGAs to significantly enhance the drug development process. Python scripts implementing various components of models are available at https://github.com/ligaili01/PLGAs.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Protein-ligand binding affinity prediction model based on graph attention network
    Yuan, Hong
    Huang, Jing
    Li, Jin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9148 - 9162
  • [2] Structure-Aware Graph Attention Diffusion Network for Protein-Ligand Binding Affinity Prediction
    Li, Mei
    Cao, Ye
    Liu, Xiaoguang
    Ji, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18370 - 18380
  • [3] GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction
    Tan, Huishuang
    Wang, Zhixin
    Hu, Guang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [4] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [5] GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction
    Wang, Kaili
    Zhou, Renyi
    Tang, Jing
    Li, Min
    BIOINFORMATICS, 2023, 39 (06)
  • [6] Predicting Protein-Ligand Binding Affinity Using Fusion Model of Spatial-Temporal Graph Neural Network and 3D Structure-Based Complex Graph
    Li, Gaili
    Yuan, Yongna
    Zhang, Ruisheng
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024,
  • [7] GIaNt: Protein-Ligand Binding Affinity Prediction via Geometry-Aware Interactive Graph Neural Network
    Li, Shuangli
    Zhou, Jingbo
    Xu, Tong
    Huang, Liang
    Wang, Fan
    Xiong, Haoyi
    Huang, Weili
    Dou, Dejing
    Xiong, Hui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (05) : 1991 - 2008
  • [8] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [9] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [10] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176