GIaNt: Protein-Ligand Binding Affinity Prediction via Geometry-Aware Interactive Graph Neural Network

被引:3
|
作者
Li, Shuangli [1 ,2 ]
Zhou, Jingbo [2 ]
Xu, Tong [1 ]
Huang, Liang [3 ]
Wang, Fan [4 ]
Xiong, Haoyi [4 ]
Huang, Weili [5 ]
Dou, Dejing [6 ]
Xiong, Hui [7 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230026, Anhui, Peoples R China
[2] Business Intelligence Lab, Baidu Res, Beijing 100085, Peoples R China
[3] Oregon State Univ, Corvallis, OR 97331 USA
[4] Baidu Inc, Beijing 100085, Peoples R China
[5] HWL Consulting LLC, Tilsworth LU7 9PU, Bedfordshire, England
[6] BCG X, Boston, MA 02210 USA
[7] Hong Kong Univ Sci & Technol Guangzhou, Artificial Intelligence Thrust, Guangzhou 529200, Peoples R China
关键词
Proteins; Three-dimensional displays; Drugs; Solid modeling; Graph neural networks; Biology; Predictive models; Binding affinity prediction; graph neural network; geometry modeling; drug discovery; compound-protein interaction; SCORING FUNCTION; MOLECULAR DOCKING; MODEL; LONG;
D O I
10.1109/TKDE.2023.3314502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the 3D geometry-based biomolecular structural information is not fully utilized. The essential intermolecular interactions with long-range dependencies, including type-wise interactions and molecule-wise interactions, are also neglected in GNN models. To this end, we propose a geometry-aware interactive graph neural network (GIaNt) which consists of two components: 3D geometric graph learning network (3DG-Net) and pairwise interactive learning network (Pi-Net). Specifically, 3DG-Net iteratively performs the node-edge interaction process to update embeddings of nodes and edges in a unified framework while preserving the 3D geometric factors among atoms, including spatial distance, polar angle and dihedral angle information in 3D space. Moreover, Pi-Net is adopted to incorporate both element type-level and molecule-level interactions. Specially, interactive edges are gathered with a subsequent reconstruction loss to reflect the global type-level interactions. Meanwhile, a pairwise attentive pooling scheme is designed to identify the critical interactive atoms for complex representation learning from a semantic view. An exhaustive experimental study on two benchmarks verifies the superiority of GIaNt.
引用
收藏
页码:1991 / 2008
页数:18
相关论文
共 50 条
  • [1] Structure-aware Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding Affinity
    Li, Shuangli
    Zhou, Jingbo
    Xu, Tong
    Huang, Liang
    Wang, Fan
    Xiong, Haoyi
    Huang, Weili
    Dou, Dejing
    Xiong, Hui
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 975 - 985
  • [2] GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction
    Tan, Huishuang
    Wang, Zhixin
    Hu, Guang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [3] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [4] GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction
    Wang, Kaili
    Zhou, Renyi
    Tang, Jing
    Li, Min
    BIOINFORMATICS, 2023, 39 (06)
  • [5] Structure-Aware Graph Attention Diffusion Network for Protein-Ligand Binding Affinity Prediction
    Li, Mei
    Cao, Ye
    Liu, Xiaoguang
    Ji, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18370 - 18380
  • [6] Protein-ligand binding affinity prediction model based on graph attention network
    Yuan, Hong
    Huang, Jing
    Li, Jin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9148 - 9162
  • [7] CL-GNN: Contrastive Learning and Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Zhang, Yunjiang
    Huang, Chenyu
    Wang, Yaxin
    Li, Shuyuan
    Sun, Shaorui
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1724 - 1735
  • [8] PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction
    Zhang, Xiangying
    Gao, Haotian
    Wang, Haojie
    Chen, Zhihang
    Zhang, Zhe
    Chen, Xinchong
    Li, Yan
    Qi, Yifei
    Wang, Renxiao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2205 - 2220
  • [9] A spatial-temporal graph attention network for protein-ligand binding affinity prediction based on molecular geometry
    Li, Gaili
    Yuan, Yongna
    Zhang, Ruisheng
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [10] Hybrid Quantum Neural Network Approaches to Protein-Ligand Binding Affinity Prediction
    Avramouli, Maria
    Savvas, Ilias K.
    Vasilaki, Anna
    Tsipourlianos, Andreas
    Garani, Georgia
    MATHEMATICS, 2024, 12 (15)