GIaNt: Protein-Ligand Binding Affinity Prediction via Geometry-Aware Interactive Graph Neural Network

被引:3
|
作者
Li, Shuangli [1 ,2 ]
Zhou, Jingbo [2 ]
Xu, Tong [1 ]
Huang, Liang [3 ]
Wang, Fan [4 ]
Xiong, Haoyi [4 ]
Huang, Weili [5 ]
Dou, Dejing [6 ]
Xiong, Hui [7 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230026, Anhui, Peoples R China
[2] Business Intelligence Lab, Baidu Res, Beijing 100085, Peoples R China
[3] Oregon State Univ, Corvallis, OR 97331 USA
[4] Baidu Inc, Beijing 100085, Peoples R China
[5] HWL Consulting LLC, Tilsworth LU7 9PU, Bedfordshire, England
[6] BCG X, Boston, MA 02210 USA
[7] Hong Kong Univ Sci & Technol Guangzhou, Artificial Intelligence Thrust, Guangzhou 529200, Peoples R China
关键词
Proteins; Three-dimensional displays; Drugs; Solid modeling; Graph neural networks; Biology; Predictive models; Binding affinity prediction; graph neural network; geometry modeling; drug discovery; compound-protein interaction; SCORING FUNCTION; MOLECULAR DOCKING; MODEL; LONG;
D O I
10.1109/TKDE.2023.3314502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the 3D geometry-based biomolecular structural information is not fully utilized. The essential intermolecular interactions with long-range dependencies, including type-wise interactions and molecule-wise interactions, are also neglected in GNN models. To this end, we propose a geometry-aware interactive graph neural network (GIaNt) which consists of two components: 3D geometric graph learning network (3DG-Net) and pairwise interactive learning network (Pi-Net). Specifically, 3DG-Net iteratively performs the node-edge interaction process to update embeddings of nodes and edges in a unified framework while preserving the 3D geometric factors among atoms, including spatial distance, polar angle and dihedral angle information in 3D space. Moreover, Pi-Net is adopted to incorporate both element type-level and molecule-level interactions. Specially, interactive edges are gathered with a subsequent reconstruction loss to reflect the global type-level interactions. Meanwhile, a pairwise attentive pooling scheme is designed to identify the critical interactive atoms for complex representation learning from a semantic view. An exhaustive experimental study on two benchmarks verifies the superiority of GIaNt.
引用
收藏
页码:1991 / 2008
页数:18
相关论文
共 50 条
  • [21] Enhancing Protein-Ligand Binding Affinity Predictions Using Neural Network Potentials
    Zariquiey, Francesc Sabanes
    Galvelis, Raimondas
    Gallicchio, Emilio
    Chodera, John D.
    Markland, Thomas E.
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (05) : 1481 - 1485
  • [22] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [23] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [24] SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction
    Hong, Qiansen
    Zhou, Guoqiang
    Qin, Yuke
    Shen, Jun
    Li, Haoran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (16) : 12880 - 12891
  • [25] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [26] Ensembling methods for protein-ligand binding affinity prediction
    Cader, Jiffriya Mohamed Abdul
    Newton, M. A. Hakim
    Rahman, Julia
    Cader, Akmal Jahan Mohamed Abdul
    Sattar, Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] GraphPLBR: Protein-Ligand Binding Residue Prediction With Deep Graph Convolution Network
    Wang, Wei
    Sun, Bin
    Yu, MengXue
    Wu, ShiYu
    Liu, Dong
    Zhang, HongJun
    Zhou, Yun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2223 - 2232
  • [28] KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks
    Jimenez, Jose
    Skalic, Miha
    Martinez-Rosell, Gerard
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) : 287 - 296
  • [29] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [30] Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks
    Essien, Clement
    Wang, Ning
    Yu, Yang
    Alqarghuli, Salhuldin
    Qin, Yongfang
    Manshour, Negin
    He, Fei
    Xu, Dong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 137 - 148