A spatial-temporal graph attention network for protein-ligand binding affinity prediction based on molecular geometry

被引:0
|
作者
Li, Gaili [1 ]
Yuan, Yongna [1 ]
Zhang, Ruisheng [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
3D protein-ligand binding affinity; Graph convolutions networks; Global attention module; Binding affinity prediction; SCORING FUNCTIONS; NEURAL-NETWORK; AUTODOCK VINA; DOCKING;
D O I
10.1007/s00530-024-01650-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurately estimating the binding strength between proteins and ligands is fundamental in the field of pharmaceutical research and innovation. Previous research has largely concentrated on 1D or 2D molecular descriptors, often neglecting the pivotal 3D features of molecules that profoundly impact drug properties and target binding. This oversight has resulted in diminished predictive performance in molecule-related analyses. A comprehensive grasp of molecular properties necessitates the integration of both local and global molecular information. In this paper, we introduce a deep-learning model, termed PLGAs, which represents molecular systems as graphs based on the three-dimensional configurations of protein-ligand complexes. PLGAs consist of two components: Graph Convolution Networks (GCN) and a Global Attention Mechanism (GAM) network. Specifically, GCNs learn both the graph structure and node attribute information, capturing local and global information to better represent node features. GAM is then used to gather interactive edges by reducing information loss and amplifying global interactions. PLGAs were tested on the standard PDBbind refined set (v.2019) and core set (v.2016). The model demonstrated a Spearman's correlation coefficient of 0.823 on the refined set and an RMSE (Root Mean Square Error) of 1.211 kcal/mol between experimental and predicted affinities on the core set, surpassing several advanced contemporary binding affinity prediction methods. We further evaluated the efficacy of various components within our model, and the marked improvements in accuracy underscore the potential of PLGAs to significantly enhance the drug development process. Python scripts implementing various components of models are available at https://github.com/ligaili01/PLGAs.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [22] Graph Attention Spatial-Temporal Network for Deep Learning Based Mobile Traffic Prediction
    He, Kaiwen
    Huang, Yufen
    Chen, Xu
    Zhou, Zhi
    Yu, Shuai
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [23] Multiple Information Spatial-Temporal Attention based Graph Convolution Network for traffic prediction
    Tao, Shiming
    Zhang, Huyin
    Yang, Fei
    Wu, Yonghao
    Li, Cong
    APPLIED SOFT COMPUTING, 2023, 136
  • [24] CL-GNN: Contrastive Learning and Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Zhang, Yunjiang
    Huang, Chenyu
    Wang, Yaxin
    Li, Shuyuan
    Sun, Shaorui
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1724 - 1735
  • [25] PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction
    Zhang, Xiangying
    Gao, Haotian
    Wang, Haojie
    Chen, Zhihang
    Zhang, Zhe
    Chen, Xinchong
    Li, Yan
    Qi, Yifei
    Wang, Renxiao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2205 - 2220
  • [26] DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention
    Chen, Xiying
    Huang, Jinsha
    Shen, Tianqiao
    Zhang, Houjin
    Xu, Li
    Yang, Min
    Xie, Xiaoman
    Yan, Yunjun
    Yan, Jinyong
    BIOINFORMATICS, 2024, 40 (06)
  • [27] Spatial-temporal graph neural network based on node attention
    Li, Qiang
    Wan, Jun
    Zhang, Wucong
    Kweh, Qian Long
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (02) : 703 - 712
  • [28] GNNSeq: A Sequence-Based Graph Neural Network for Predicting Protein-Ligand Binding Affinity
    Dandibhotla, Somanath
    Samudrala, Madhav
    Kaneriya, Arjun
    Dakshanamurthy, Sivanesan
    PHARMACEUTICALS, 2025, 18 (03)
  • [29] Surface-based multimodal protein-ligand binding affinity prediction
    Xu, Shiyu
    Shen, Lian
    Zhang, Menglong
    Jiang, Changzhi
    Zhang, Xinyi
    Xu, Yanni
    Liu, Juan
    Liu, Xiangrong
    BIOINFORMATICS, 2024, 40 (07)
  • [30] Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
    Wang, Debby D.
    Chan, Moon-Tong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1088 - 1096