A Note on Kähler–Ricci Flow on Fano Threefolds

被引:0
|
作者
Minghao Miao [1 ]
Gang Tian [2 ]
机构
[1] Nanjing University,Department of Mathematics
[2] BICMR and SMS,undefined
[3] Peking University,undefined
关键词
Kähler–Ricci soliton; K-stability; Fano threefold; Kähler–Ricci flow; Primary 53E30; Secondary 32Q26;
D O I
10.1007/s42543-023-00078-0
中图分类号
学科分类号
摘要
In this note, we show that the solution of Kähler–Ricci flow on every Fano threefold from Family No. 2.23 in the Mori–Mukai’s list develops type II singularity. In fact, we show that no Fano threefold from Family No. 2.23 admits Kähler–Ricci soliton and the Gromov–Hausdorff limit of the Kähler–Ricci flow must be a singular Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-Fano variety. This gives new examples of Fano manifolds of the lowest dimension on which Kähler–Ricci flow develops type II singularity.
引用
收藏
页码:191 / 199
页数:8
相关论文
共 50 条
  • [31] Kähler–Ricci flow on blowups along submanifolds
    Bin Guo
    Mathematische Annalen, 2019, 375 : 1147 - 1167
  • [32] Modified Kähler–Ricci flow on projective bundles
    Ryosuke Takahashi
    Mathematische Zeitschrift, 2015, 281 : 395 - 413
  • [33] The Kähler–Ricci flow with positive bisectional curvature
    D.H. Phong
    Jian Song
    Jacob Sturm
    Ben Weinkove
    Inventiones mathematicae, 2008, 173 : 651 - 665
  • [34] Minimal models for Kähler threefolds
    Andreas Höring
    Thomas Peternell
    Inventiones mathematicae, 2016, 203 : 217 - 264
  • [35] The Kähler–Ricci flow on surfaces of positive Kodaira dimension
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2007, 170 : 609 - 653
  • [36] Collapsing limits of the Kähler–Ricci flow and the continuity method
    Yashan Zhang
    Mathematische Annalen, 2019, 374 : 331 - 360
  • [37] Special Kähler–Ricci potentials and Ricci solitons
    Gideon Maschler
    Annals of Global Analysis and Geometry, 2008, 34 : 367 - 380
  • [38] On the Kähler-Ricci Flow on Projective Manifolds of General Type
    Gang Tian*
    Zhou Zhang
    Chinese Annals of Mathematics, Series B, 2006, 27 : 179 - 192
  • [39] On the log abundance for compact Kähler threefolds
    Omprokash Das
    Wenhao Ou
    manuscripta mathematica, 2024, 173 : 341 - 404
  • [40] Instantaneously complete Chern–Ricci flow and Kähler–Einstein metrics
    Shaochuang Huang
    Man-Chun Lee
    Luen-Fai Tam
    Calculus of Variations and Partial Differential Equations, 2019, 58