A Note on Kähler–Ricci Flow on Fano Threefolds

被引:0
|
作者
Minghao Miao [1 ]
Gang Tian [2 ]
机构
[1] Nanjing University,Department of Mathematics
[2] BICMR and SMS,undefined
[3] Peking University,undefined
关键词
Kähler–Ricci soliton; K-stability; Fano threefold; Kähler–Ricci flow; Primary 53E30; Secondary 32Q26;
D O I
10.1007/s42543-023-00078-0
中图分类号
学科分类号
摘要
In this note, we show that the solution of Kähler–Ricci flow on every Fano threefold from Family No. 2.23 in the Mori–Mukai’s list develops type II singularity. In fact, we show that no Fano threefold from Family No. 2.23 admits Kähler–Ricci soliton and the Gromov–Hausdorff limit of the Kähler–Ricci flow must be a singular Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-Fano variety. This gives new examples of Fano manifolds of the lowest dimension on which Kähler–Ricci flow develops type II singularity.
引用
收藏
页码:191 / 199
页数:8
相关论文
共 50 条
  • [21] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334
  • [22] Hyperbolic Khler-Ricci flow
    XU Chao Department of Mathematics
    Science China(Mathematics), 2010, 53 (11) : 3027 - 3036
  • [23] Hyperbolic Kähler-Ricci flow
    Chao Xu
    Science China Mathematics, 2010, 53 : 3027 - 3036
  • [24] A Gradient Estimate for the Ricci–Kähler Flow
    Bennett Chow
    Annals of Global Analysis and Geometry, 2001, 19 : 321 - 325
  • [25] Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold
    Feng Wang
    Xiaohua Zhu
    Science China Mathematics, 2022, 65 : 2337 - 2370
  • [26] A Weil–Petersson Type Metric on the Space of Fano Kähler–Ricci Solitons
    Huai-Dong Cao
    Xiaofeng Sun
    Yingying Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [27] Uniformly strong convergence of K?hler-Ricci flows on a Fano manifold
    Feng Wang
    Xiaohua Zhu
    ScienceChina(Mathematics), 2022, 65 (11) : 2337 - 2370
  • [28] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [29] Convergence of the Generalized Kähler-Ricci Flow
    Liu J.
    Wang Y.
    Communications in Mathematics and Statistics, 2015, 3 (2) : 239 - 261
  • [30] The Modified Cusp Kähler–Ricci Flow and Soliton
    Pan Zhang
    The Journal of Geometric Analysis, 2021, 31 : 10402 - 10435