Feasible preparation of polarization hybrid Greenberger-Horne-Zeilinger state based on optimal quantum scissors

被引:0
|
作者
Cui, Shi-He [1 ]
Gu, Shi-Pu [2 ,3 ]
Wang, Xing-Fu [1 ]
Zhou, Lan [1 ]
Sheng, Yu-Bo [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Entanglement; Polarization hybrid entanglement; Coherent state; Quantum scissor; ENTANGLED STATES; GENERATION;
D O I
10.1007/s11128-025-04652-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid entanglement containing continuous-variable (CV) and discrete-variable quantum systems combines the advantages of both systems. The polarization hybrid entanglement has been widely applied in various quantum information processing tasks. In this paper, we propose the preparation protocols for two kinds of polarization hybrid Greenberger-Horne-Zeilinger (GHZ) states using the optimal quantum scissors (QSs) based on the local-quadrature squeezing operation. Our protocols first use the cat states and the coherent states as resources to deterministically generate the polarization CV GHZ states, and then use the optimal QSs to truncate the coherent states to generate two kinds of polarization hybrid GHZ states. Our preparation protocols have some advantages. First, they only require the linear optical elements, especially the practical "on-off" photon detectors, so that they are feasible and flexible under current experimental conditions. Second, they do not reply on the post-selection. The generated polarization hybrid GHZ states can be remained for other applications. Third, the optimal QS can effectively increase the fidelity of the target hybrid GHZ states. Our preparation protocols have application potential in future quantum information processing field with hybrid entanglement.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Entanglement concentration for concatenated Greenberger-Horne-Zeilinger state
    Qu, Chang-Cheng
    Zhou, Lan
    Sheng, Yu-Bo
    QUANTUM INFORMATION PROCESSING, 2015, 14 (11) : 4131 - 4146
  • [22] Entanglement and nonlocality for generalized Greenberger-Horne-Zeilinger state
    Wang Xiao-Qin
    Lu Huai-Xin
    Zhao Jia-Qiang
    ACTA PHYSICA SINICA, 2011, 60 (11)
  • [23] Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State
    El Allati, A.
    Medeni, M. B. Ould
    Hassouni, Y.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 577 - 582
  • [24] Generation of the quadripartite Greenberger-Horne-Zeilinger entangled state in quantum beat lasers
    Wang, Fei
    LASER PHYSICS LETTERS, 2013, 10 (12)
  • [25] Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State
    A.El Allati
    M.B.Ould Medeni
    Y.Hassouni
    Communications in Theoretical Physics, 2012, 57 (04) : 577 - 582
  • [26] Continuous variable quantum conference network with a Greenberger-Horne-Zeilinger entangled state
    Qin, Y. U. E.
    Ma, J. I. N. G. X. U.
    Cheng, J. I. A. L. I. N.
    Yan, Z. H. I. H. U. I.
    Jia, X. I. A. O. J. U. N.
    PHOTONICS RESEARCH, 2023, 11 (04) : 533 - 540
  • [27] Optical test on Greenberger-Horne-Zeilinger paradox of quantum nonlocality
    Lee, J
    Lee, SW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 : S181 - S186
  • [28] Relativistic quantum nonlocality for the three-qubit Greenberger-Horne-Zeilinger state
    Moradi, Shahpoor
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [29] Greenberger-Horne-Zeilinger state generation with linear optical elements
    Bernardo, Bertulio de Lima
    Lencses, Mate
    Brito, Samurai
    Canabarro, Askery
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [30] Controlled dense coding using the Greenberger-Horne-Zeilinger state
    Hao, JC
    Li, CF
    Guo, GC
    PHYSICAL REVIEW A, 2001, 63 (05): : 3