On the Existence of Monge Solutions to Multi-marginal Optimal Transport with Quadratic Cost and Uniform Discrete Marginals

被引:0
|
作者
Pedram Emami [1 ]
Brendan Pass [1 ]
机构
[1] University of Alberta,
关键词
Multi-marginal optimal transport; Discrete marginals; Monge solutions; Wasserstein barycenter; 49Q22;
D O I
10.1007/s43069-025-00437-w
中图分类号
学科分类号
摘要
A natural and important question in multi-marginal optimal transport is whether the Monge ansatz is justified; does there exist a solution of Monge, or deterministic, form? We address this question for the quadratic cost when each marginal measure is m-empirical (that is, uniformly supported on m points). By direct computation, we provide an example showing that the ansatz can fail when the underlying dimension d is 2, the number of marginals N to be matched is 3, and the size m of their supports is 3. As a consequence, the set of m-empirical measures is not barycentrically convex when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 3$$\end{document}, d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document}, and m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document}. It is a well-known consequence of the Birkhoff-von Neumann theorem that the Monge ansatz holds for N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, standard techniques show it holds when d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, and we provide a simple proof here that it holds whenever m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}. Therefore, the N, d, and m in our counterexample are as small as possible.
引用
收藏
相关论文
共 35 条
  • [31] Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion
    Elvander F.
    Haasler I.
    Jakobsson A.
    Karlsson J.
    Elvander, Filip (filip.elvander@matstat.lu.se), 1600, Elsevier B.V., Netherlands (171):
  • [32] Accelerating the Sinkhorn Algorithm for Sparse Multi-Marginal Optimal Transport via Fast Fourier Transforms
    Ba, Fatima Antarou
    Quellmalz, Michael
    ALGORITHMS, 2022, 15 (09)
  • [33] Estimating Latent Population Flows from Aggregated Data via Inversing Multi-Marginal Optimal Transport
    Yang, Sikun
    Zha, Hongyuan
    2023 SIAM International Conference on Data Mining, SDM 2023, 2023, : 181 - 189
  • [34] Geometry of Kantorovich polytopes and support of optimizers for repulsive multi-marginal optimal transport on finite state spaces
    Voegler, Daniela
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [35] Estimating Latent Population Flows from Aggregated Data via Inversing Multi-Marginal Optimal Transport
    Yang, Sikun
    Zha, Hongyuan
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 181 - 189