On the Existence of Monge Solutions to Multi-marginal Optimal Transport with Quadratic Cost and Uniform Discrete Marginals

被引:0
|
作者
Pedram Emami [1 ]
Brendan Pass [1 ]
机构
[1] University of Alberta,
关键词
Multi-marginal optimal transport; Discrete marginals; Monge solutions; Wasserstein barycenter; 49Q22;
D O I
10.1007/s43069-025-00437-w
中图分类号
学科分类号
摘要
A natural and important question in multi-marginal optimal transport is whether the Monge ansatz is justified; does there exist a solution of Monge, or deterministic, form? We address this question for the quadratic cost when each marginal measure is m-empirical (that is, uniformly supported on m points). By direct computation, we provide an example showing that the ansatz can fail when the underlying dimension d is 2, the number of marginals N to be matched is 3, and the size m of their supports is 3. As a consequence, the set of m-empirical measures is not barycentrically convex when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 3$$\end{document}, d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document}, and m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document}. It is a well-known consequence of the Birkhoff-von Neumann theorem that the Monge ansatz holds for N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, standard techniques show it holds when d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document}, and we provide a simple proof here that it holds whenever m=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}. Therefore, the N, d, and m in our counterexample are as small as possible.
引用
收藏
相关论文
共 35 条
  • [21] Hierarchical Multi-Marginal Optimal Transport for Network Alignment
    Zeng, Zhichen
    Du, Boxin
    Zhang, Si
    Xia, Yinglong
    Liu, Zhining
    Tong, Hanghang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16660 - 16668
  • [22] Robust Risk Management via Multi-marginal Optimal Transport
    Ennaji, Hamza
    Merigot, Quentin
    Nenna, Luca
    Pass, Brendan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) : 554 - 581
  • [23] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    I. Abraham
    R. Abraham
    M. Bergounioux
    G. Carlier
    Applied Mathematics & Optimization, 2017, 75 : 55 - 73
  • [24] Convergence rate of entropy-regularized multi-marginal optimal transport costs
    Nenna, Luca
    Pegon, Paul
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [25] A multi-marginal c-convex duality theorem for martingale optimal transport
    Sester, Julian
    STATISTICS & PROBABILITY LETTERS, 2024, 210
  • [26] Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
    Abraham, I.
    Abraham, R.
    Bergounioux, M.
    Carlier, G.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 75 (01): : 55 - 73
  • [27] DUALITY THEORY FOR MULTI-MARGINAL OPTIMAL TRANSPORT WITH REPULSIVE COSTS IN METRIC SPACES
    Gerolin, Augusto
    Kausamo, Anna
    Rajala, Tapio
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [28] Decoupling of DeGiorgi-Type Systems via Multi-Marginal Optimal Transport
    Ghoussoub, Nassif
    Pass, Brendan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (06) : 1032 - 1047
  • [29] Sufficiency of c-cyclical monotonicity in a class of multi-marginal optimal transport problems
    De Pascale, Luigi
    Kausamo, Anna
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024,
  • [30] BREAKING THE CURSE OF DIMENSION IN MULTI-MARGINAL KANTOROVICH OPTIMAL TRANSPORT ON FINITE STATE SPACES
    Friesecke, Gero
    Voegler, Daniela
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 3996 - 4019