Considerations of growth factor and material use in bone tissue engineering using biodegradable scaffolds in vitro and in vivo

被引:0
|
作者
Marshall, Karen M. [1 ]
Wojciechowski, Jonathan P. [2 ,3 ,8 ]
Jayawarna, Vineetha [4 ]
Hasan, Abshar [5 ]
Echalier, Cecile [2 ,3 ]
Ovrebo, Oystein [2 ,3 ]
Yang, Tao [2 ,3 ,8 ]
Zhou, Kun [2 ,3 ]
Kanczler, Janos M. [1 ]
Mata, Alvaro [5 ,6 ,7 ]
Salmeron-Sanchez, Manuel [4 ]
Stevens, Molly M. [2 ,3 ,8 ]
Oreffo, Richard O. C. [1 ]
机构
[1] Univ Southampton, Inst Dev Sci, Bone & Joint Res Grp, Ctr Human Dev Stem Cells & Regenerat, Southampton SO16 6YD, England
[2] Imperial Coll London, Dept Mat, Dept Bioengn, London SW7 2AZ, England
[3] Imperial Coll London, Inst Biomed Engn, London SW7 2AZ, England
[4] Univ Glasgow, Ctr Cellular Microenvironm, Adv Res Ctr, Sch Engn, Glasgow G11 6EW, Scotland
[5] Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England
[6] Univ Nottingham, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[7] Univ Nottingham, NIHR Nottingham Biomed Res Ctr, Nottingham NG7 2RD, England
[8] Univ Oxford, Kavli Inst Nanosci Discovery, Dept Physiol Anat & Genet, Dept Engn Sci, Oxford OX1 3QU, England
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
Bioactive coating; Biomaterial; Bone tissue engineering; CAM assay; Animal models; ANGIOGENESIS; BMP; REGENERATION; FRACTURES; INDUCTION;
D O I
10.1038/s41598-024-75198-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone tissue engineering aims to harness materials to develop functional bone tissue to heal 'critical-sized' bone defects. This study examined a robust, coated poly(caprolactone) trimethacrylate (PCL-TMA) 3D-printable scaffold designed to augment bone formation. Following optimisation of the coatings, three bioactive coatings were examined, i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA), fibronectin (FN) and bone morphogenetic protein-2 (BMP-2) applied sequentially (PEA/FN/BMP-2) and iii) both ELP and PEA/FN/BMP-2 coatings applied concurrently. The scaffold material was robust and showed biodegradability. The coatings demonstrated a significant (p < 0.05) osteogenic response in vitro in alkaline phosphatase gene upregulation and alkaline phosphatase production. The PCL-TMA scaffold and coatings supported angiogenesis and displayed excellent biocompatibility following evaluation on the chorioallantoic membrane assay. No significant (p < 0.05) heterotopic bone formed on the scaffolds within a murine subcutaneous implantation model, compared to the positive control of BMP-2 loaded collagen sponge following examination by micro-computed tomography or histology. The current studies demonstrate a range of innovative coated scaffold constructs with in vitro efficacy and clearly illustrate the importance of an appropriate in vivo environment to validate in vitro functionality prior to scale up and preclinical application.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds
    Patel, Zarana S.
    Ueda, Hiroki
    Yamamoto, Masaya
    Tabata, Yasuhiko
    Mikos, Antonios G.
    PHARMACEUTICAL RESEARCH, 2008, 25 (10) : 2370 - 2378
  • [42] The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations
    Grad, S
    Kupcsik, L
    Gorna, K
    Gogolewski, S
    Alini, M
    BIOMATERIALS, 2003, 24 (28) : 5163 - 5171
  • [43] Growth factor release from tissue engineering scaffolds
    Whitaker, MJ
    Quirk, RA
    Howdle, SM
    Shakesheff, KM
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2001, 53 (11) : 1427 - 1437
  • [44] Growth factor-loaded scaffolds for bone engineering
    Jansen, JA
    Vehof, JWM
    Ruhé, PQ
    Kroeze-Deutman, H
    Kuboki, Y
    Takita, H
    Hedberg, EL
    Mikos, AG
    JOURNAL OF CONTROLLED RELEASE, 2005, 101 (1-3) : 127 - 136
  • [45] In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold
    Yang, Bo
    Yin, Zhanhai
    Cao, Junling
    Shi, Zhongli
    Zhang, Zengtie
    Song, Hongxing
    Liu, Fuqiang
    Caterson, Bruce
    BIOMEDICAL MATERIALS, 2010, 5 (04)
  • [46] Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    Claire Delabarde
    Christopher J. G. Plummer
    Pierre-Etienne Bourban
    Jan-Anders E. Månson
    Journal of Materials Science: Materials in Medicine, 2012, 23 : 1371 - 1385
  • [47] Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering
    Agrawal, CM
    McKinney, JS
    Lanctot, D
    Athanasiou, KA
    BIOMATERIALS, 2000, 21 (23) : 2443 - 2452
  • [48] Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering
    Martins, Albino
    Pinho, Elisabete D.
    Correlo, Vitor M.
    Faria, Susana
    Marques, Alexandra P.
    Reis, Rui L.
    Neves, Nuno M.
    TISSUE ENGINEERING PART A, 2010, 16 (12) : 3599 - 3609
  • [49] Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    Delabarde, Claire
    Plummer, Christopher J. G.
    Bourban, Pierre-Etienne
    Manson, Jan-Anders E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (06) : 1371 - 1385
  • [50] Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering
    Bhattacharyya, Subhabrata
    Kumbar, Sangamesh G.
    Khan, Yusuf M.
    Nair, Lakshmi S.
    Singh, Anurima
    Krogman, Nick R.
    Brown, Paul W.
    Allcock, Harry R.
    Laurencin, Cato T.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2009, 5 (01) : 69 - 75