Considerations of growth factor and material use in bone tissue engineering using biodegradable scaffolds in vitro and in vivo

被引:0
|
作者
Marshall, Karen M. [1 ]
Wojciechowski, Jonathan P. [2 ,3 ,8 ]
Jayawarna, Vineetha [4 ]
Hasan, Abshar [5 ]
Echalier, Cecile [2 ,3 ]
Ovrebo, Oystein [2 ,3 ]
Yang, Tao [2 ,3 ,8 ]
Zhou, Kun [2 ,3 ]
Kanczler, Janos M. [1 ]
Mata, Alvaro [5 ,6 ,7 ]
Salmeron-Sanchez, Manuel [4 ]
Stevens, Molly M. [2 ,3 ,8 ]
Oreffo, Richard O. C. [1 ]
机构
[1] Univ Southampton, Inst Dev Sci, Bone & Joint Res Grp, Ctr Human Dev Stem Cells & Regenerat, Southampton SO16 6YD, England
[2] Imperial Coll London, Dept Mat, Dept Bioengn, London SW7 2AZ, England
[3] Imperial Coll London, Inst Biomed Engn, London SW7 2AZ, England
[4] Univ Glasgow, Ctr Cellular Microenvironm, Adv Res Ctr, Sch Engn, Glasgow G11 6EW, Scotland
[5] Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England
[6] Univ Nottingham, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[7] Univ Nottingham, NIHR Nottingham Biomed Res Ctr, Nottingham NG7 2RD, England
[8] Univ Oxford, Kavli Inst Nanosci Discovery, Dept Physiol Anat & Genet, Dept Engn Sci, Oxford OX1 3QU, England
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
Bioactive coating; Biomaterial; Bone tissue engineering; CAM assay; Animal models; ANGIOGENESIS; BMP; REGENERATION; FRACTURES; INDUCTION;
D O I
10.1038/s41598-024-75198-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone tissue engineering aims to harness materials to develop functional bone tissue to heal 'critical-sized' bone defects. This study examined a robust, coated poly(caprolactone) trimethacrylate (PCL-TMA) 3D-printable scaffold designed to augment bone formation. Following optimisation of the coatings, three bioactive coatings were examined, i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA), fibronectin (FN) and bone morphogenetic protein-2 (BMP-2) applied sequentially (PEA/FN/BMP-2) and iii) both ELP and PEA/FN/BMP-2 coatings applied concurrently. The scaffold material was robust and showed biodegradability. The coatings demonstrated a significant (p < 0.05) osteogenic response in vitro in alkaline phosphatase gene upregulation and alkaline phosphatase production. The PCL-TMA scaffold and coatings supported angiogenesis and displayed excellent biocompatibility following evaluation on the chorioallantoic membrane assay. No significant (p < 0.05) heterotopic bone formed on the scaffolds within a murine subcutaneous implantation model, compared to the positive control of BMP-2 loaded collagen sponge following examination by micro-computed tomography or histology. The current studies demonstrate a range of innovative coated scaffold constructs with in vitro efficacy and clearly illustrate the importance of an appropriate in vivo environment to validate in vitro functionality prior to scale up and preclinical application.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Biomimetic Scaffolds for In Vitro Bone Marrow Tissue Engineering
    Tran, Y.
    Carpenter, R.
    Lee, J.
    TISSUE ENGINEERING PART A, 2015, 21 : S205 - S205
  • [22] Biodegradable polymeric scaffolds for cancellous bone graft substitutes and tissue engineering
    Gogolewski, S
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2002, 25 (07): : 624 - 624
  • [23] Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering
    Ryszkowska, Joanna L.
    Auguscik, Monika
    Sheikh, Ann
    Boccaccini, Aldo R.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) : 1894 - 1908
  • [24] Composition and Structure of Fibrous Hydroxyapatite Growth on an Injectale Bone Tissue Engineering Scaffolds Material
    邱进俊
    刘承美
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2005, (S1) : 159 - 162
  • [25] Biodegradable Poly(α-hydroxy acid) Polymer Scaffolds for Bone Tissue Engineering
    Yu, Nicole Y. C.
    Schindeler, Aaron
    Little, David G.
    Ruys, Andrew J.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2010, 93B (01) : 285 - 295
  • [26] Biodegradable and bioactive nHAC/CMs/PLLA scaffolds for bone tissue engineering
    Niu, Xufeng
    Fan, Yubo
    Li, Ping
    Feng, Qingling
    BONE, 2010, 47 : S438 - S438
  • [27] A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology
    Paltanea, Gheorghe
    Manescu , Veronica
    Antoniac, Iulian
    Antoniac, Aurora
    Nemoianu, Iosif Vasile
    Robu, Alina
    Dura, Horatiu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [28] Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering
    Gross, KA
    Rodríguez-Lorenzo, LM
    BIOMATERIALS, 2004, 25 (20) : 4955 - 4962
  • [29] New fabrication methods of bioactive and biodegradable scaffolds for bone tissue engineering
    Jung, Youngmee
    Kim, Su Hee
    Kim, Sang-Heon
    Kim, Soo Hyun
    JOURNAL OF CELLULAR PLASTICS, 2011, 47 (03) : 261 - 270
  • [30] Tissue engineering a tendon-bone junction with biodegradable braided scaffolds
    Harshini Ramakrishna
    Tieshi Li
    Ting He
    Joseph Temple
    Martin W. King
    Anna Spagnoli
    Biomaterials Research, 23