Considerations of growth factor and material use in bone tissue engineering using biodegradable scaffolds in vitro and in vivo

被引:0
|
作者
Marshall, Karen M. [1 ]
Wojciechowski, Jonathan P. [2 ,3 ,8 ]
Jayawarna, Vineetha [4 ]
Hasan, Abshar [5 ]
Echalier, Cecile [2 ,3 ]
Ovrebo, Oystein [2 ,3 ]
Yang, Tao [2 ,3 ,8 ]
Zhou, Kun [2 ,3 ]
Kanczler, Janos M. [1 ]
Mata, Alvaro [5 ,6 ,7 ]
Salmeron-Sanchez, Manuel [4 ]
Stevens, Molly M. [2 ,3 ,8 ]
Oreffo, Richard O. C. [1 ]
机构
[1] Univ Southampton, Inst Dev Sci, Bone & Joint Res Grp, Ctr Human Dev Stem Cells & Regenerat, Southampton SO16 6YD, England
[2] Imperial Coll London, Dept Mat, Dept Bioengn, London SW7 2AZ, England
[3] Imperial Coll London, Inst Biomed Engn, London SW7 2AZ, England
[4] Univ Glasgow, Ctr Cellular Microenvironm, Adv Res Ctr, Sch Engn, Glasgow G11 6EW, Scotland
[5] Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England
[6] Univ Nottingham, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[7] Univ Nottingham, NIHR Nottingham Biomed Res Ctr, Nottingham NG7 2RD, England
[8] Univ Oxford, Kavli Inst Nanosci Discovery, Dept Physiol Anat & Genet, Dept Engn Sci, Oxford OX1 3QU, England
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
Bioactive coating; Biomaterial; Bone tissue engineering; CAM assay; Animal models; ANGIOGENESIS; BMP; REGENERATION; FRACTURES; INDUCTION;
D O I
10.1038/s41598-024-75198-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone tissue engineering aims to harness materials to develop functional bone tissue to heal 'critical-sized' bone defects. This study examined a robust, coated poly(caprolactone) trimethacrylate (PCL-TMA) 3D-printable scaffold designed to augment bone formation. Following optimisation of the coatings, three bioactive coatings were examined, i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA), fibronectin (FN) and bone morphogenetic protein-2 (BMP-2) applied sequentially (PEA/FN/BMP-2) and iii) both ELP and PEA/FN/BMP-2 coatings applied concurrently. The scaffold material was robust and showed biodegradability. The coatings demonstrated a significant (p < 0.05) osteogenic response in vitro in alkaline phosphatase gene upregulation and alkaline phosphatase production. The PCL-TMA scaffold and coatings supported angiogenesis and displayed excellent biocompatibility following evaluation on the chorioallantoic membrane assay. No significant (p < 0.05) heterotopic bone formed on the scaffolds within a murine subcutaneous implantation model, compared to the positive control of BMP-2 loaded collagen sponge following examination by micro-computed tomography or histology. The current studies demonstrate a range of innovative coated scaffold constructs with in vitro efficacy and clearly illustrate the importance of an appropriate in vivo environment to validate in vitro functionality prior to scale up and preclinical application.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bone tissue engineering on biodegradable scaffolds
    Davies, JE
    Baksh, D
    TISSUE ENGINEERING FOR THERAPEUTIC USE 4, 2000, 1198 : 15 - 24
  • [2] Biodegradable polymeric scaffolds for bone tissue engineering
    Cui, JF
    Yin, YJ
    He, SL
    Yao, KD
    PROGRESS IN CHEMISTRY, 2004, 16 (02) : 299 - 307
  • [3] Biodegradable Scaffolds for use in orthopaedic tissue engineering
    Athanasiou, K
    PROCEEDINGS OF THE 1996 FIFTEENTH SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE, 1996, : 541 - 544
  • [4] Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering
    Blackwood, Keith A.
    Bock, Nathalie
    Dargaville, Timr R.
    Woodruff, Maria Ann
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2012, 2012
  • [5] Electrospun biodegradable nanofibers scaffolds for bone tissue engineering
    Khajavi, Ramin
    Abbasipour, Mina
    Bahador, Abbas
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (03)
  • [6] Biodegradable Bone Regeneration Synthetic Scaffolds: in Tissue Engineering
    Hammouche, Salah
    Hammouche, Dalia
    McNicholas, Michael
    CURRENT STEM CELL RESEARCH & THERAPY, 2012, 7 (02) : 134 - 142
  • [7] Biodegradable smart cryogels as bone tissue engineering scaffolds
    Bolgen, N.
    Aguilar, M. R.
    Fernandez, M.
    San Roman, J.
    Piskin, E.
    TISSUE ENGINEERING, 2007, 13 (07): : 1643 - 1644
  • [8] Tissue engineering and regeneration using biodegradable scaffolds
    Zhang, X.
    Zhang, Y.
    PANMINERVA MEDICA, 2015, 57 (04) : 147 - 152
  • [9] Decellularized Apple-Derived Scaffolds for Bone Tissue Engineering In Vitro and In Vivo
    Latour, Maxime Leblanc
    Tarar, Maryam
    Hickey, Ryan J.
    Cuerrier, Charles M.
    Catelas, Isabelle
    Pelling, Andrew E.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (204):
  • [10] In Vitro and In Vivo Evaluation of Carboxymethyl Cellulose Scaffolds for Bone Tissue Engineering Applications
    Priya, Ganesan
    Madhan, Balaraman
    Narendrakumar, Uttamchand
    Kumar, Rayadurgam Venkata Suresh
    Manjubala, Inderchand
    ACS OMEGA, 2021, 6 (02): : 1246 - 1253