Fractal quasicondensation in one dimension

被引:0
|
作者
Riche, Flavio [1 ]
Goncalves, Miguel [2 ]
Amorim, Bruno [3 ,4 ]
Castro, Eduardo, V
Ribeiro, Pedro [1 ,5 ]
机构
[1] Univ Lisbon, CeFEMA, LaPMET, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[3] Univ Minho, Ctr Fis Univ Minho & Porto, LaPMET, Campus Gualtar, P-4710057 Braga, Portugal
[4] Int Iberian Nanotechnol Lab INL, Ave Mestre Jose Veiga, P-4715310 Braga, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
关键词
BOSE-EINSTEIN CONDENSATION; LOCALIZATION; DIFFUSION; INSULATOR; FERMIONS; SYSTEMS; ABSENCE;
D O I
10.1103/PhysRevB.110.224523
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We unveil a mechanism for quasicondensation of hard-core bosons in the presence of quasiperiodicity-induced multifractal single-particle states. The observed phase, here dubbed a fractal quasicondensate, is characterized by natural orbitals with multifractal properties and by an occupancy of the lowest natural orbital, lambda(0 )similar or equal to( ) L gamma , which grows with system size but with a nonuniversal scaling exponent, gamma < 1/2. In contrast to fractal quasicondensates obtained when the chemical potential lies in a region of multifractal single-particle states, placing the chemical potential in regions of localized or delocalized states yields, respectively, no condensation or the usual 1D quasicondensation with gamma = 1/2. Our findings are established by studying one-dimensional hard-core bosons subjected to various quasiperiodic potentials, including the well-known Aubry-Andr & eacute; model, employing a mapping to noninteracting fermions that allows for numerically exact results. We discuss how to test our findings in state-of-the-art ultracold atom experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fractal dimension and fractal growth of urbanized areas
    Shen, GQ
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (05) : 419 - 437
  • [42] Fractal dimension for fractal structures: A Hausdorff approach
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1825 - 1837
  • [43] Fractal retraction and fractal dimension of dynamical manifold
    El-Ghoul, M
    El-Zhouny, H
    Abo-El-Fotooh, SI
    CHAOS SOLITONS & FRACTALS, 2003, 18 (01) : 187 - 192
  • [44] Counterexamples in theory of fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Nowak, Magdalena
    Sanchez-Granero, M. A.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 210 - 223
  • [45] A FRACTAL NETWORK MODEL WITH TUNABLE FRACTAL DIMENSION
    Yang, Lei
    Pei, Wenjiang
    Li, Tao
    Cao, Yanfei
    Shen, Yi
    Wang, Shaoping
    He, Zhenya
    2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 53 - 57
  • [46] Graph fractal dimension and the structure of fractal networks
    Skums, Pavel
    Bunimovich, Leonid
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (04)
  • [47] Fractal Analysis and Fractal Dimension in Materials Chemistry
    Dobrescu, Gianina
    Papa, Florica
    State, Razvan
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [48] The spectral dimension of aggregates of tunable fractal dimension
    Thouy, R
    Jullien, R
    Benoit, C
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (50) : 9703 - 9714
  • [49] A new fractal dimension: The topological Hausdorff dimension
    Balka, Richard
    Buczolich, Zoltan
    Elekes, Marton
    ADVANCES IN MATHEMATICS, 2015, 274 : 881 - 927
  • [50] Spectral dimension of aggregates of tunable fractal dimension
    Thouy, R.
    Jullien, R.
    Benoit, C.
    Journal of Physics Condensed Matter, 1995, 7 (50):