Fractal quasicondensation in one dimension

被引:0
|
作者
Riche, Flavio [1 ]
Goncalves, Miguel [2 ]
Amorim, Bruno [3 ,4 ]
Castro, Eduardo, V
Ribeiro, Pedro [1 ,5 ]
机构
[1] Univ Lisbon, CeFEMA, LaPMET, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[3] Univ Minho, Ctr Fis Univ Minho & Porto, LaPMET, Campus Gualtar, P-4710057 Braga, Portugal
[4] Int Iberian Nanotechnol Lab INL, Ave Mestre Jose Veiga, P-4715310 Braga, Portugal
[5] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
关键词
BOSE-EINSTEIN CONDENSATION; LOCALIZATION; DIFFUSION; INSULATOR; FERMIONS; SYSTEMS; ABSENCE;
D O I
10.1103/PhysRevB.110.224523
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We unveil a mechanism for quasicondensation of hard-core bosons in the presence of quasiperiodicity-induced multifractal single-particle states. The observed phase, here dubbed a fractal quasicondensate, is characterized by natural orbitals with multifractal properties and by an occupancy of the lowest natural orbital, lambda(0 )similar or equal to( ) L gamma , which grows with system size but with a nonuniversal scaling exponent, gamma < 1/2. In contrast to fractal quasicondensates obtained when the chemical potential lies in a region of multifractal single-particle states, placing the chemical potential in regions of localized or delocalized states yields, respectively, no condensation or the usual 1D quasicondensation with gamma = 1/2. Our findings are established by studying one-dimensional hard-core bosons subjected to various quasiperiodic potentials, including the well-known Aubry-Andr & eacute; model, employing a mapping to noninteracting fermions that allows for numerically exact results. We discuss how to test our findings in state-of-the-art ultracold atom experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] FRACTAL DIMENSION AND SPECTRUM
    TRICOT, C
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1988, 85 (03) : 379 - 384
  • [22] THE FRACTAL DIMENSION OF CHEMISTRY
    BRICKMANN, J
    ORDER AND CHAOS IN INANIMATE AND ANIMATE NATURE, 1989, 115 : 229 - 247
  • [23] FRACTAL DIMENSION OF COCITATIONS
    VANRAAN, AFJ
    NATURE, 1990, 347 (6294) : 626 - 626
  • [24] On fractal dimension estimation
    Panek, David
    Kropik, Petr
    Predota, Antonin
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 120 - 122
  • [25] ESTIMATING FRACTAL DIMENSION
    THEILER, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (06): : 1055 - 1073
  • [26] The fractal dimension of policing
    Verma, A
    JOURNAL OF CRIMINAL JUSTICE, 1998, 26 (05) : 425 - 435
  • [27] On fractal dimension of waveforms
    Sevcik, C
    CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 579 - 580
  • [28] Aggregates of fractal dimension
    Dokter, W.H.
    van Garderen, H.F.
    Beelen, T.P.M.
    van Santen, R.A.
    Bras, W.
    Angewandte Chemie (International Edition in English), 1995, 34 (01): : 73 - 75
  • [29] On the Fractal Dimension of Isosurfaces
    Khoury, Marc
    Wenger, Rephael
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1198 - 1205
  • [30] ESTIMATING THE DIMENSION OF A FRACTAL
    TAYLOR, CC
    TAYLOR, SJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 353 - 364