Eco-Friendly High-Performance Symmetric All-COF/Graphene Aqueous Zinc-Ion Batteries

被引:0
|
作者
Yi, Pengshu [1 ,2 ]
Li, Zhiheng [1 ,3 ]
Ma, Longli [1 ,2 ]
Feng, Bingjian [4 ]
Liu, Zhu [1 ,2 ]
Liu, Yongshuai [1 ,2 ]
Lu, Wenyi [1 ,2 ]
Cao, Shaochong [1 ,2 ]
Fang, Huayi [4 ,5 ]
Ye, Mingxin [1 ]
Shen, Jianfeng [1 ]
机构
[1] Fudan Univ, Inst Special Mat & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[4] Nankai Univ, Sch Mat Sci & Engn, Tianjin Key Lab Rare Earth Mat & Applicat, Tianjin 300350, Peoples R China
[5] Shanghai Zhitong Construct Engn Technol Co Ltd, Shanghai 204433, Peoples R China
关键词
aqueous battery; covalent organic frameworks; high rate performance; organic cathode; symmetric all-organic battery; HIGH-CAPACITY; CATHODE;
D O I
10.1002/adma.202414379
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing high-performance aqueous symmetric all-organic batteries (SAOBs) by replacing metal-based batteries or batteries with organic electrolytes is highly attractive to achieve a greener rechargeable world. However, such a new energy storage system still exhibits unsatisfactory rate capability and cycling stability due to the limitations in electrode materials screening. Here, a novel covalent organic framework (COF) containing abundant C=N and C=O for the electrode material is designed, which is combined with graphene and assembled into all-COF/graphene batteries for the first time. Moreover, the co-storage of Zn2+ and H+ in COF can be achieved in a mild aqueous electrolyte. Impressively, benefiting from the extended porous structure of COF, plentiful active reaction sites, more extensive electron delocalization from C=O modification at molecular level, as well as enhanced fast H+ storage capacity of graphene and C=O in COF, this kind of SAOBs show excellent cycle life and high rate performance (over 15000 cycles with a capacity of 80 mAh g-1 at a high current density of 5 A g-1 in pouch cell). This work will open a new window for the design of high-performance aqueous organic batteries, further moving toward a more eco-friendly electrochemical world.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [32] A Feasible Strategy for High-Performance Aqueous Zinc-Ion Batteries: Introducing Conducting Polymer
    Zhao, Yi
    Wei, Mengzhen
    Zhang, Huanrong
    Zhang, Huimin
    Zhu, Yucheng
    Ma, Hui
    Xue, Mianqi
    CHEMSUSCHEM, 2025, 18 (02)
  • [33] High-Performance Aqueous Zinc-Ion Battery Based on Laser-Induced Graphene
    Yang, Chengjuan
    Tong, Yuchun
    Yang, Zhen
    Xiao, Hui
    Qi, Huimin
    Chen, Faze
    NANOMANUFACTURING AND METROLOGY, 2023, 6 (01)
  • [34] Graphene nanoribbons: High-quality conductive additive for high performance aqueous zinc-ion batteries
    Xiang, Yongsheng
    Tang, Bin
    Zhou, Minquan
    Li, Xinlu
    Wang, Ronghua
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [35] Integrated 'all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries
    Li, Canpeng
    Xie, Xuesong
    Liu, Hui
    Wang, Pinji
    Deng, Canbin
    Lu, Bingan
    Zhou, Jiang
    Liang, Shuquan
    NATIONAL SCIENCE REVIEW, 2022, 9 (03)
  • [36] Buried interface engineering towards stable zinc anodes for high-performance aqueous zinc-ion batteries
    Wen, Qing
    Fu, Hao
    Sun, Chao
    Cui, Rude
    Chen, Hezhang
    Ji, Ruihan
    Tang, Linbo
    Wu, Qing
    Wang, Jiexi
    Li, Lingjun
    Zhang, Jiafeng
    Zhang, Xiahui
    Zheng, Junchao
    SCIENCE BULLETIN, 2025, 70 (04) : 518 - 528
  • [37] Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries
    Canpeng Li
    Xuesong Xie
    Hui Liu
    Pinji Wang
    Canbin Deng
    Bingan Lu
    Jiang Zhou
    Shuquan Liang
    NationalScienceReview, 2022, 9 (03) : 63 - 71
  • [38] Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries
    Du, Wencheng
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3330 - 3360
  • [39] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [40] Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries
    Yu Tan
    Jinjun He
    Bo Wang
    Cheng Chao Li
    Taihong Wang
    Chinese Chemical Letters, 2023, 34 (04) : 521 - 526