Eco-Friendly High-Performance Symmetric All-COF/Graphene Aqueous Zinc-Ion Batteries

被引:0
|
作者
Yi, Pengshu [1 ,2 ]
Li, Zhiheng [1 ,3 ]
Ma, Longli [1 ,2 ]
Feng, Bingjian [4 ]
Liu, Zhu [1 ,2 ]
Liu, Yongshuai [1 ,2 ]
Lu, Wenyi [1 ,2 ]
Cao, Shaochong [1 ,2 ]
Fang, Huayi [4 ,5 ]
Ye, Mingxin [1 ]
Shen, Jianfeng [1 ]
机构
[1] Fudan Univ, Inst Special Mat & Technol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[4] Nankai Univ, Sch Mat Sci & Engn, Tianjin Key Lab Rare Earth Mat & Applicat, Tianjin 300350, Peoples R China
[5] Shanghai Zhitong Construct Engn Technol Co Ltd, Shanghai 204433, Peoples R China
关键词
aqueous battery; covalent organic frameworks; high rate performance; organic cathode; symmetric all-organic battery; HIGH-CAPACITY; CATHODE;
D O I
10.1002/adma.202414379
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing high-performance aqueous symmetric all-organic batteries (SAOBs) by replacing metal-based batteries or batteries with organic electrolytes is highly attractive to achieve a greener rechargeable world. However, such a new energy storage system still exhibits unsatisfactory rate capability and cycling stability due to the limitations in electrode materials screening. Here, a novel covalent organic framework (COF) containing abundant C=N and C=O for the electrode material is designed, which is combined with graphene and assembled into all-COF/graphene batteries for the first time. Moreover, the co-storage of Zn2+ and H+ in COF can be achieved in a mild aqueous electrolyte. Impressively, benefiting from the extended porous structure of COF, plentiful active reaction sites, more extensive electron delocalization from C=O modification at molecular level, as well as enhanced fast H+ storage capacity of graphene and C=O in COF, this kind of SAOBs show excellent cycle life and high rate performance (over 15000 cycles with a capacity of 80 mAh g-1 at a high current density of 5 A g-1 in pouch cell). This work will open a new window for the design of high-performance aqueous organic batteries, further moving toward a more eco-friendly electrochemical world.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [22] Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries
    Zhao, Jingteng
    Song, Congying
    Ma, Shaobo
    Gao, Qixin
    Li, Zhujie
    Dai, Ying
    Li, Guoxing
    ENERGY STORAGE MATERIALS, 2023, 61
  • [23] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [24] Recent advance and design strategies of chalcogenides for high-performance aqueous zinc-ion batteries
    Wang, Lujing
    Li, Shuyue
    Wang, Chunzhong
    Yao, Shiyu
    Chen, Gang
    Du, Fei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (25)
  • [25] Tailoring vanadium oxide crystal orientation for high-performance aqueous zinc-ion batteries
    Li, Rong
    Yuan, Yifei
    Yang, Linyu
    Wang, Jun
    Wang, Shuying
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    DALTON TRANSACTIONS, 2024, 53 (09) : 4108 - 4118
  • [26] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283
  • [27] Bifunctional electrolyte additive ammonium persulfate for high-performance aqueous zinc-ion batteries
    Xu, Yuanmei
    Li, Xueshi
    Wang, Xiatong
    Weng, Qijia
    Sun, Weijun
    MATERIALS TODAY SUSTAINABILITY, 2024, 28
  • [28] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [29] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)
  • [30] Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries
    Zhang, Xiaotan
    Li, Jiangxu
    Ao, Huaisheng
    Liu, Dongyan
    Shi, Lei
    Wang, Chengming
    Zhu, Yongchun
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2020, 30 : 337 - 345