Discrete Time Crystals in Unbounded Potentials

被引:0
|
作者
Bar Lev, Yevgeny [1 ]
Lazarides, Achilleas [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Loughborough Univ, Loughborough LE11 3TU, Leics, England
基金
以色列科学基金会; 英国工程与自然科学研究理事会;
关键词
MANY-BODY LOCALIZATION; PERIODICALLY DRIVEN;
D O I
10.1103/PhysRevLett.133.200401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete time crystalline phases have attracted significant theoretical and experimental attention in the last few years. Such systems require a seemingly impossible combination of nonadiabatic driving and a finite-entropy long-time state, which, surprisingly, is possible in nonergodic systems. Previous works have often relied on disorder for the required nonergodicity; here, we describe the construction of a discrete time crystal (DTC) phase in nondisordered, nonintegrable Ising-type systems. After discussing the conditions for interacting and periodically driven systems to display such phases in general, we propose a concrete model and then provide approximate analytical arguments and direct numerical evidence that it satisfies the conditions and displays a DTC phase robust to local periodic perturbations.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Adiabatic and irreversible classical discrete time crystals
    Ernst, Adrian
    Rossi, Anna M. E. B.
    Fischer, Thomas M.
    SCIPOST PHYSICS, 2022, 13 (04):
  • [22] Nonperturbative decay of bipartite discrete time crystals
    Fernandes, Lennart
    Tindall, Joseph
    Sels, Dries
    PHYSICAL REVIEW B, 2025, 111 (10)
  • [23] DELAYED POTENTIALS AND REPRESENTATION OF SPACE-TIME FUNCTIONS WITH UNBOUNDED DEFINITION DOMAIN
    GERDES, W
    MARTENSEN, E
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (01) : 11 - 34
  • [24] Colloquium: Quantum and classical discrete time crystals
    Zaletel, Michael P.
    Lukin, Mikhail
    Monroe, Christopher
    Nayak, Chetan
    Wilczek, Frank
    Yao, Norman Y.
    REVIEWS OF MODERN PHYSICS, 2023, 95 (03)
  • [25] Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials
    Aissa Aibeche
    Karima Laidoune
    Abdelaziz Rhandi
    Archiv der Mathematik, 2010, 94 : 565 - 577
  • [26] Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials
    Aibeche, Aissa
    Laidoune, Karima
    Rhandi, Abdelaziz
    ARCHIV DER MATHEMATIK, 2010, 94 (06) : 565 - 577
  • [27] On discrete moments of unbounded order
    Klette, Reinhard
    Zunic, Jovisa
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2006, 4245 : 367 - 378
  • [28] MULTIPLE-PRIORS OPTIMAL INVESTMENT IN DISCRETE TIME FOR UNBOUNDED UTILITY FUNCTION
    Blanchard, Romain
    Carassu, Laurence
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (03): : 1856 - 1892
  • [29] Landau Hamiltonians with Unbounded Random Potentials
    J. M. Barbaroux
    J. M. Combes
    P. D. Hislop
    Letters in Mathematical Physics, 1997, 40 : 355 - 369
  • [30] ON THE EXISTENCE OF OPTIMAL POTENTIALS ON UNBOUNDED DOMAINS
    Buttazzo, Giuseppe
    Casado-Diaz, Juan
    Maestre, Faustino
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) : 1088 - 1121