Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials

被引:0
|
作者
Aissa Aibeche
Karima Laidoune
Abdelaziz Rhandi
机构
[1] Université Ferhat Abbes Sétif,Département de Mathématiques, Faculté des Sciences
[2] Università degli Studi di Salerno,Dipartimento di Ingegneria dell’Informazione e Matematica Applicata
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
Primary 35K65; 47D07; Secondary 60J35; Kolmogorov semigroups; Kernel estimates; Lyapunov functions; Schrödinger operators;
D O I
暂无
中图分类号
学科分类号
摘要
We study global regularity properties of transition kernels associated to second order differential operators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^N}$$\end{document} with unbounded drift and potential terms. Under suitable conditions, we prove pointwise upper bounds. We use time dependent Lyapunov function techniques allowing us to gain a better time behaviour of such kernels.
引用
收藏
页码:565 / 577
页数:12
相关论文
共 50 条