FEMCE - A 3D finite element simulation tool for magnetic refrigerants

被引:0
|
作者
Kiefe, R. [1 ]
Amaral, J. S.
机构
[1] Aveiro Inst Mat, Dept Phys, P-3810193 Aveiro, Portugal
关键词
Magnetocaloric effect; Simulation; Demagnetizing field; Magnetic refrigeration;
D O I
10.1016/j.ijrefrig.2025.02.017
中图分类号
O414.1 [热力学];
学科分类号
摘要
A critical challenge for magnetic refrigeration is designing shape-optimized refrigerants. When applying a magnetic field to the refrigerant, its magnetocaloric effect (MCE) heterogeneity is directly related to the demagnetizing field (a geometric phenomenon). Striking a balance between the total mass/volume of refrigerant, and its effective performance at a given temperature and applied magnetic field is a complex non-linear magnetostatics problem. We present a tool for estimating both the spatially-resolved and effective MCE for any refrigerant design, via the 3D finite element method- Finite Element Magnetocaloric Effect (FEMCE). FEMCE allows the user to input complex refrigerant shapes, together with the thermophysical properties of the material, to estimate and optimize its refrigerant performance for a given temperature and applied magnetic field change. The tool can be readily employed for both the conventional and demagnetizing-field induced MCE.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [21] A holistic 3D finite element simulation model for thermoelectric power generator element
    Wu, Guangxi
    Yu, Xiong
    ENERGY CONVERSION AND MANAGEMENT, 2014, 86 : 99 - 110
  • [22] 3D FINITE ELEMENT SIMULATION OF CUTTING PROCESS USING SURFACE MICRO-TEXTURED CUTTING TOOL
    Yang, Haokai
    Tu, Yuyang
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 949 - 952
  • [23] Calculation of 3D stationary magnetic fields by finite element method
    Shulzhenko, N. G.
    Pantelyat, M. G.
    Rudenko, E. K.
    Saphonov, A. N.
    ELECTRICAL ENGINEERING & ELECTROMECHANICS, 2009, (05) : 33 - +
  • [24] 3D Finite Element Analysis for Magnetic Flux Leakage Testing
    Song, Qiang
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 1623 - 1626
  • [25] On the 2D and 3D finite element simulation in orthopaedy using MRI
    Bartos, M
    Kestranek, Z
    Kestránek, Z
    Nedoma, J
    Stehlík, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 115 - 121
  • [26] 3D Finite Element Simulation of Micro End-Milling by Considering the Effect of Tool Run-Out
    Davoudinejad, Ali
    Tosello, Guido
    Parenti, Paolo
    Annoni, Massimiliano
    MICROMACHINES, 2017, 8 (06)
  • [27] Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals
    W. J. Zong
    Z. Q. Li
    L. Zhang
    Y. C. Liang
    T. Sun
    C. H. An
    J. F. Zhang
    L. Zhou
    J. Wang
    The International Journal of Advanced Manufacturing Technology, 2013, 68 : 1927 - 1936
  • [28] Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals
    Zong, W. J.
    Li, Z. Q.
    Zhang, L.
    Liang, Y. C.
    Sun, T.
    An, C. H.
    Zhang, J. F.
    Zhou, L.
    Wang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 68 (9-12): : 1927 - 1936
  • [29] Lagrangian finite element model for the 3D simulation of glass forming processes
    Ryzhakov, P. B.
    Garcia, J.
    Onate, E.
    COMPUTERS & STRUCTURES, 2016, 177 : 126 - 140
  • [30] Numerical simulation of magnetohydrodynamic duct flows in 3D by finite element methods
    Verardi, SLL
    Cardoso, JR
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS, 2000, : 47 - 50