FEMCE - A 3D finite element simulation tool for magnetic refrigerants

被引:0
|
作者
Kiefe, R. [1 ]
Amaral, J. S.
机构
[1] Aveiro Inst Mat, Dept Phys, P-3810193 Aveiro, Portugal
关键词
Magnetocaloric effect; Simulation; Demagnetizing field; Magnetic refrigeration;
D O I
10.1016/j.ijrefrig.2025.02.017
中图分类号
O414.1 [热力学];
学科分类号
摘要
A critical challenge for magnetic refrigeration is designing shape-optimized refrigerants. When applying a magnetic field to the refrigerant, its magnetocaloric effect (MCE) heterogeneity is directly related to the demagnetizing field (a geometric phenomenon). Striking a balance between the total mass/volume of refrigerant, and its effective performance at a given temperature and applied magnetic field is a complex non-linear magnetostatics problem. We present a tool for estimating both the spatially-resolved and effective MCE for any refrigerant design, via the 3D finite element method- Finite Element Magnetocaloric Effect (FEMCE). FEMCE allows the user to input complex refrigerant shapes, together with the thermophysical properties of the material, to estimate and optimize its refrigerant performance for a given temperature and applied magnetic field change. The tool can be readily employed for both the conventional and demagnetizing-field induced MCE.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [11] A fully 3D finite element simulation of cold pilgering
    Mulot, S
    Hacquin, A
    Montmitonnet, P
    Aubin, JL
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 60 (1-4) : 505 - 512
  • [12] 3D finite element simulation and synthetic tests of vacuum interrupters with axial magnetic field contacts
    Henon, A
    Altimani, T
    Picot, P
    Schellekens, H
    ISDEIV: XXTH INTERNATIONAL SYMPOSIUM ON DISCHARGES AND ELECTRICAL INSULATION IN VACUUM, PROCEEDINGS, 2002, 20 : 463 - 466
  • [13] 3D printing of porcelain: finite element simulation of anisotropic sintering
    Maniere, Charles
    Harnois, Christelle
    Marinel, Sylvain
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 116 (9-10): : 3263 - 3275
  • [14] 3D finite element simulation of deep drawing with damage development
    Fan, J. P.
    Tang, C. Y.
    Tsui, C. P.
    Chan, L. C.
    Lee, T. C.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2006, 46 (09): : 1035 - 1044
  • [15] Finite element method for accurate 3D simulation of plasmonic waveguides
    Burger, Sven
    Zschiedrich, Lin
    Pomplun, Jan
    Schmidt, Frank
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XIV, 2010, 7604
  • [16] Analysis of the vane rheometer using 3D finite element simulation
    Savarmand, Saeid
    Heniche, Mourad
    Bechard, Vincent
    Bertrand, Francois
    Carreau, Pierre J.
    JOURNAL OF RHEOLOGY, 2007, 51 (02) : 161 - 177
  • [17] 3D finite element simulation for turning of hardened 45 steel
    Liu M.
    Li G.
    Zhao X.
    Qi X.
    Zhao S.
    Recent Patents on Engineering, 2019, 13 (02) : 181 - 188
  • [18] 3D printing of porcelain: finite element simulation of anisotropic sintering
    Charles Manière
    Christelle Harnois
    Sylvain Marinel
    The International Journal of Advanced Manufacturing Technology, 2021, 116 : 3263 - 3275
  • [19] Finite element simulation of 3D flow around a circular cylinder
    Kakuda, K.
    Miura, S.
    Tosaka, N.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (3-4) : 193 - 209
  • [20] 3d finite element simulation of damage in asphalt concrete pavements
    Blaauwendraad, J
    Scarpas, A
    MCCI'2000: INTERNATIONAL SYMPOSIUM ON MODERN CONCRETE COMPOSITES & INFRASTRUCTURES, VOL I, 2000, : 11 - 16