PyFaults: a Python']Python tool for stacking fault screening

被引:0
|
作者
Combs, Sinclair R. [1 ]
Maughan, Annalise E. [1 ,2 ]
机构
[1] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Mat Chem & Comp Sci Directorate, Golden, CO 80401 USA
来源
关键词
stacking faults; planar disorder; supercell modeling; PyFaults; powder X-ray diffraction; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; REFINEMENT; DISORDER; WURTZITE; DEFECTS; PROGRAM; OXIDE;
D O I
10.1107/S1600576724009956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
PyFaults is an open-source Python library designed to model stacking fault disorder in crystalline materials and qualitatively assess the characteristic selective broadening effects in powder X-ray diffraction (PXRD). Here, the main capabilities of PyFaults are presented, including unit cell and supercell model construction, PXRD pattern calculation, assessment against experimental PXRD, and methods for rapid screening of candidate models within a set of possible stacking vectors and fault occurrence probabilities. This program aims to serve as a computationally inexpensive tool for identifying and screening potential stacking fault models in materials with planar disorder. Three diverse case studies, involving GaN, Li2MnO3 and Li3YCl6, are presented to illustrate the program functionality across a range of structure types and stacking fault modalities.
引用
收藏
页码:1996 / 2009
页数:14
相关论文
共 50 条
  • [41] A Python']Python-based Software Tool for Power System Analysis
    Milano, Federico
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [42] Advanced PANIC quick-look tool using Python']Python
    Ibanez, Jose-Miguel
    Garcia Segura, Antonio J.
    Storz, Clemens
    Fried, Josef W.
    Fernandez, Matilde
    Rodriguez Gomez, Julio F.
    Terron, V.
    Cardenas, M. C.
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY II, 2012, 8451
  • [43] drexml: A command line tool and Python']Python package for drug repurposing
    Esteban-Medina, Marina
    Roque, Victor Manuel de la Oliva
    Herraiz-Gil, Sara
    Pena-Chilet, Maria
    Dopazo, Joaquin
    Loucera, Carlos
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 1129 - 1143
  • [44] Employing an underwater vehicle in education as a learning tool for Python']Python programming
    Rousouliotis, Minas
    Vasileiou, Marios
    Manos, Nikolaos
    Kavallieratou, Ergina
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2024, 32 (01)
  • [45] KGEN: A Python']Python Tool for Automated Fortran Kernel Generation and Verification
    Kim, Youngsung
    Dennis, John
    Kerr, Christopher
    Kumar, Raghu Raj Prasanna
    Simha, Amogh
    Baker, Allison
    Mickelson, Sheri
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1450 - 1460
  • [46] PyLandslide: A Python']Python tool for landslide susceptibility mapping and uncertainty analysis
    Basheer, Mohammed
    Oommen, Thomas
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 177
  • [47] A Python']Python Based InSAR Processing Tool For ISRO SAR Missions
    Panchal, Rajvi
    Chirakkal, Sanid
    Putrevu, Deepak
    Misra, Arundhati
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [48] TextX: A Python']Python tool for Domain-Specific Languages implementation
    Dejanovic, I.
    Vaderna, R.
    Milosavljevic, G.
    Vukovic, Z.
    KNOWLEDGE-BASED SYSTEMS, 2017, 115 : 1 - 4
  • [49] PyTheis-A Python']Python Tool for Analyzing Pump Test Data
    Chang, Sun Woo
    Memari, Sama S.
    Clement, T. Prabhakar
    WATER, 2021, 13 (16)
  • [50] A PYTHON']PYTHON BASED POWER ELECTRONICS E-LEARNING TOOL
    Goldemberg, Clovis
    Pellini, Eduardo Lorenzetti
    Kaiser, Walter
    Komatsu, Wilson
    2009 BRAZILIAN POWER ELECTRONICS CONFERENCE, VOLS 1 AND 2, 2009, : 148 - 152