PyFaults: a Python']Python tool for stacking fault screening

被引:0
|
作者
Combs, Sinclair R. [1 ]
Maughan, Annalise E. [1 ,2 ]
机构
[1] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Mat Chem & Comp Sci Directorate, Golden, CO 80401 USA
来源
关键词
stacking faults; planar disorder; supercell modeling; PyFaults; powder X-ray diffraction; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; REFINEMENT; DISORDER; WURTZITE; DEFECTS; PROGRAM; OXIDE;
D O I
10.1107/S1600576724009956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
PyFaults is an open-source Python library designed to model stacking fault disorder in crystalline materials and qualitatively assess the characteristic selective broadening effects in powder X-ray diffraction (PXRD). Here, the main capabilities of PyFaults are presented, including unit cell and supercell model construction, PXRD pattern calculation, assessment against experimental PXRD, and methods for rapid screening of candidate models within a set of possible stacking vectors and fault occurrence probabilities. This program aims to serve as a computationally inexpensive tool for identifying and screening potential stacking fault models in materials with planar disorder. Three diverse case studies, involving GaN, Li2MnO3 and Li3YCl6, are presented to illustrate the program functionality across a range of structure types and stacking fault modalities.
引用
收藏
页码:1996 / 2009
页数:14
相关论文
共 50 条
  • [21] MPInterfaces: A Materials Project based Python']Python tool for high-throughput computational screening of interfacial systems
    Mathew, Kiran
    Singh, Arunima K.
    Gabriel, Joshua J.
    Choudhary, Kamal
    Sinnott, Susan B.
    Davydov, Albert V.
    Tavazza, Francesca
    Hennig, Richard G.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 : 183 - 190
  • [22] νDoBe - A Python']Python tool for neutrinoless double beta decay
    Scholer, Oliver
    de Vries, Jordy
    Graf, Lukas
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [23] A Python']Python Based EMT Model Quality Testing Tool
    Wang, Xiaoyu
    Huang, Shun Hsien
    Schmall, John
    Conto, Jose
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [24] pytest-inline: An Inline Testing Tool for Python']Python
    Liu, Yu
    Thurston, Zachary
    Han, Alan
    Nie, Pengyu
    Gligoric, Milos
    Legunsen, Owolabi
    2023 IEEE/ACM 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS, ICSE-COMPANION, 2023, : 161 - 164
  • [25] PyECOM: A Python']Python tool for analyzing and simulating Energy Communities
    Gomes, Eduardo
    Pereira, Lucas
    Esteves, Augusto
    Morais, Hugo
    SOFTWAREX, 2023, 24
  • [26] A Simulation Tool for Vertical Transportation Systems using Python']Python
    Chaosangket, Nathaporn
    Sasithong, Pruk
    Wijayasekara, Sanika K.
    Asdornwised, Widhyakorn
    Wuttisittikulkij, Lunchakorn
    Vanichchanunt, Pisit
    Saadi, Muhammad
    PROCEEDINGS OF 2018 5TH INTERNATIONAL CONFERENCE ON BUSINESS AND INDUSTRIAL RESEARCH (ICBIR): SMART TECHNOLOGY FOR NEXT GENERATION OF INFORMATION, ENGINEERING, BUSINESS AND SOCIAL SCIENCE, 2018, : 270 - 275
  • [27] LPATH: A Semiautomated Python']Python Tool for Clustering Molecular Pathways
    Bogetti, Anthony T.
    Leung, Jeremy M. G.
    Chong, Lillian T.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (24) : 7610 - 7616
  • [28] PySmooth: a Python']Python tool for the removal and correction of genotyping errors
    Soibam, Benjamin
    Roman, Gregg
    BMC RESEARCH NOTES, 2024, 17 (01)
  • [29] A Python']Python Tool for the Implementation of Domain-Specific Languages
    Dejanovic, Igor
    Vaderna, Renata
    Milosavljevic, Gordana
    Simic, Milos
    Vukovic, Zeljko
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [30] PETAL: a Python']Python tool for deep analysis of biological pathways
    Sgroi, Giuseppe
    Russo, Giulia
    Pappalardo, Francesco
    BIOINFORMATICS, 2020, 36 (22-23) : 5553 - 5555