Detection of crack bar deterioration at offshore wind turbine supports using generative adversarial networks and autoencoders

被引:0
|
作者
Prieto-Galarza, Ricardo [1 ,2 ]
Tutivén, Christian [3 ]
Vidal, Yolanda [1 ,4 ]
机构
[1] Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besós (CDB), Eduard Maristany, 16, Barcelona,08019, Spain
[2] Universidad Ecotec, Km. 13.5 Samborondón, Samborondón,EC092302, Ecuador
[3] ESPOL Polytechnic University, Escuela Superior Politécnica Del Litoral, Faculty of Mechanical Engineering and Production Science (FIMCP), Mechatronic Engineering, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
[4] Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, Barcelona,08028, Spain
来源
Journal of Physics: Conference Series | 2024年 / 2647卷 / 18期
关键词
Accelerometer data - Anomaly detection models - Auto encoders - Input sample - Mechanism-based - Network models - Network training - Response mechanisms - Training phasis - Training process;
D O I
182010
中图分类号
学科分类号
摘要
14
引用
收藏
相关论文
共 50 条
  • [31] A Framework for Anomaly Detection in IoT Networks Using Conditional Generative Adversarial Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 165907 - 165931
  • [32] Anomaly detection of adversarial examples using class-conditional generative adversarial networks
    Wang, Hang
    Miller, David J.
    Kesidis, George
    COMPUTERS & SECURITY, 2023, 124
  • [33] Reliability analysis of a floating offshore wind turbine using Bayesian Networks
    Li, He
    Soares, C. Guedes
    Huang, Hong-Zhong
    OCEAN ENGINEERING, 2020, 217
  • [34] Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks
    Su, Yuanhao
    Meng, Liang
    Kong, Xiaojia
    Xu, Tongle
    Lan, Xiaosheng
    Li, Yunfeng
    ENGINEERING FAILURE ANALYSIS, 2022, 140
  • [35] Optical Image Encryption Vulnerability Detection by Using Generative Adversarial Networks
    Yu, Runchao
    Tu, Xiaowei
    Yang, Jianming
    Yang, Qinghua
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5118 - 5123
  • [36] Improving synthetic media generation and detection using generative adversarial networks
    Zia, Rabbia
    Rehman, Mariam
    Hussain, Afzaal
    Nazeer, Shahbaz
    Anjum, Maria
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [37] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [38] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    Engineering Applications of Artificial Intelligence, 2021, 104
  • [39] Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection
    Chen, Yi-Ming
    Yang, Chun-Hsien
    Chen, Guo-Chung
    2021 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2021,
  • [40] Brain Tumor Detection and Classification Using Cycle Generative Adversarial Networks
    Gupta, Rajeev Kumar
    Bharti, Santosh
    Kunhare, Nilesk
    Sahu, Yatendra
    Pathik, Nikhlesh
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (02) : 485 - 502