Detection of crack bar deterioration at offshore wind turbine supports using generative adversarial networks and autoencoders

被引:0
|
作者
Prieto-Galarza, Ricardo [1 ,2 ]
Tutivén, Christian [3 ]
Vidal, Yolanda [1 ,4 ]
机构
[1] Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besós (CDB), Eduard Maristany, 16, Barcelona,08019, Spain
[2] Universidad Ecotec, Km. 13.5 Samborondón, Samborondón,EC092302, Ecuador
[3] ESPOL Polytechnic University, Escuela Superior Politécnica Del Litoral, Faculty of Mechanical Engineering and Production Science (FIMCP), Mechatronic Engineering, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
[4] Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, Barcelona,08028, Spain
来源
Journal of Physics: Conference Series | 2024年 / 2647卷 / 18期
关键词
Accelerometer data - Anomaly detection models - Auto encoders - Input sample - Mechanism-based - Network models - Network training - Response mechanisms - Training phasis - Training process;
D O I
182010
中图分类号
学科分类号
摘要
14
引用
收藏
相关论文
共 50 条
  • [21] Unsupervised anomaly detection using inverse generative adversarial networks
    Xiao, Feng
    Zhou, Jianfeng
    Han, Kunpeng
    Hu, Haoyuan
    Fan, Jicong
    INFORMATION SCIENCES, 2025, 689
  • [22] IoT Threat Detection Testbed Using Generative Adversarial Networks
    Shaikh, Farooq
    Bou-Harb, Elias
    Vehabovic, Aldin
    Crichigno, Jorge
    Yayimli, Aysegul
    Ghani, Nasir
    2022 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2022, : 77 - 84
  • [23] DeepMoney: counterfeit money detection using generative adversarial networks
    Ali, Toqeer
    Jan, Salman
    Alkhodre, Ahmad
    Nauman, Mohammad
    Amin, Muhammad
    Siddiqui, Muhammad Shoaib
    PEERJ COMPUTER SCIENCE, 2019, 2019 (09)
  • [24] Stock Price Manipulation Detection using Generative Adversarial Networks
    Leangarun, Teema
    Tangamchit, Poj
    Thajchayapong, Suttipong
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2104 - 2111
  • [25] Malware Detection Using Deep Transferred Generative Adversarial Networks
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 556 - 564
  • [26] An Enhancing Framework for Botnet Detection Using Generative Adversarial Networks
    Yin, Chuanlong
    Zhu, Yuefei
    Liu, Shengli
    Fei, Jinlong
    Zhang, Hetong
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 228 - 234
  • [27] Improving Licence Plate Detection Using Generative Adversarial Networks
    Boby, Alden
    Brown, Dane
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 588 - 601
  • [28] Web Bot Detection Evasion Using Generative Adversarial Networks
    Iliou, Christos
    Kostoulas, Theodoros
    Tsikrika, Theodora
    Katos, Vasilis
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 115 - 120
  • [29] Data Imputation of Wind Turbine Using Generative Adversarial Nets with Deep Learning Models
    Qu, Fuming
    Liu, Jinhai
    Hong, Xiaowei
    Zhang, Yu
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 152 - 161
  • [30] A Small-Sample Wind Turbine Fault Detection Method With Synthetic Fault Data Using Generative Adversarial Nets
    Liu, Jinhai
    Qu, Fuming
    Hong, Xiaowei
    Zhang, Huaguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 3877 - 3888