ParamANN: a neural network to estimate cosmological parameters for ΛCDM Universe using Hubble measurements

被引:0
|
作者
Pal, Srikanta [1 ]
Saha, Rajib [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal 462066, Madhya Pradesh, India
关键词
Hubble parameter; cosmological density parameters; machine learning; MCMC; BARYON ACOUSTIC-OSCILLATION; DARK ENERGY DYNAMICS; LUMINOUS RED GALAXIES; POWER SPECTRUM; SCALAR FIELD; H(Z) DATA; CONSTRAINTS; CONSTANT; SEPARATION;
D O I
10.1088/1402-4896/ad804d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we employ a machine learning (ML) approach for the estimations of four fundamental parameters, namely, the Hubble constant (H 0), matter (Omega 0m ), curvature (Omega 0k ) and vacuum (Omega 0 Lambda) densities of non-flat Lambda CDM model. We use 31 Hubble parameter values measured by differential ages (DA) technique in the redshift interval 0.07 <= z <= 1.965. We create an artificial neural network (ParamANN) and train it with simulated values of H(z) using various sets of H 0, Omega 0m , Omega 0k , Omega 0 Lambda parameters chosen from different and sufficiently wide prior intervals. We use a correlated noise model in the analysis. We demonstrate accurate validation and prediction using ParamANN. ParamANN provides an excellent cross-check for the validity of the Lambda CDM model. We obtain H 0 = 68.14 +/- 3.96 kmMpc-1s-1, Omega 0m = 0.3029 +/- 0.1118, Omega 0k = 0.0708 +/- 0.2527 and Omega 0 Lambda = 0.6258 +/- 0.1689 by using the trained network. These parameter values agree very well with the results of global CMB observations of the Planck collaboration. We compare the cosmological parameter values predicted by ParamANN with those obtained by the MCMC method. Both the results agree well with each other. This demonstrates that ParamANN is an alternative and complementary approach to the well-known Metropolis-Hastings algorithm for estimating the cosmological parameters by using Hubble measurements.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Apply neural network ensemble to estimate IRT item parameters in test of small samples
    Yu, Jia-Yuan
    Wang, Cun-You
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2006, 27 (SUPPL.): : 36 - 39
  • [32] Artificial neural network application to estimate kinematic soil pile interaction response parameters
    Ahmad, Irshad
    El Naggar, M. Hesham
    Khan, Akhtar Naeem
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2007, 27 (09) : 892 - 905
  • [33] The Estimate of Informative Parameters Based on the Neural Network Approach During Monitoring of the Geotechnical System
    Dorofeev, Nikolay, V
    Pankina, Ekaterina S.
    Goryachev, Maxim S.
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 942 - 946
  • [34] Identification of Erroneous Network Parameters Using SCADA Measurements
    Zhang, Haibo
    Diao, Zhiwei
    2018 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2018, : 1645 - 1649
  • [35] Using neural network model to estimate the rental price of residential properties
    Oshodi, Olalekan Shamsideen
    Thwala, Wellington Didibhuku
    Odubiyi, Tawakalitu Bisola
    Abidoye, Rotimi Boluwatife
    Aigbavboa, Clinton Ohis
    JOURNAL OF FINANCIAL MANAGEMENT OF PROPERTY AND CONSTRUCTION, 2019, 24 (02) : 217 - 230
  • [36] Using Cartesian Slice Plots of a Cosmological Simulation as Input of a Convolutional Neural Network
    Guillermo Arreaga-García
    Research in Astronomy and Astrophysics, 2024, 24 (11) : 227 - 244
  • [37] Using Cartesian Slice Plots of a Cosmological Simulation as Input of a Convolutional Neural Network
    Arreaga-Garcia, Guillermo
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (11)
  • [38] Using neural network models to estimate critical constants for petroleum products
    Riazi, MR
    Elkamel, A
    SIMULATORS INTERNATIONAL XIV, 1997, 29 (03): : 172 - 177
  • [39] Bidirectional long short-term memory attention neural network to estimate neural mass model parameters
    Zhang, Hao
    Yang, Changqing
    Xu, Jingping
    Yuan, Guanli
    Li, Xiaoli
    Gu, Guanghua
    Cui, Dong
    Chaos, Solitons and Fractals, 1600,
  • [40] Bidirectional long short-term memory attention neural network to estimate neural mass model parameters
    Zhang, Hao
    Yang, Changqing
    Xu, Jingping
    Yuan, Guanli
    Li, Xiaoli
    Gu, Guanghua
    Cui, Dong
    CHAOS SOLITONS & FRACTALS, 2025, 192