ParamANN: a neural network to estimate cosmological parameters for ΛCDM Universe using Hubble measurements

被引:0
|
作者
Pal, Srikanta [1 ]
Saha, Rajib [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal 462066, Madhya Pradesh, India
关键词
Hubble parameter; cosmological density parameters; machine learning; MCMC; BARYON ACOUSTIC-OSCILLATION; DARK ENERGY DYNAMICS; LUMINOUS RED GALAXIES; POWER SPECTRUM; SCALAR FIELD; H(Z) DATA; CONSTRAINTS; CONSTANT; SEPARATION;
D O I
10.1088/1402-4896/ad804d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we employ a machine learning (ML) approach for the estimations of four fundamental parameters, namely, the Hubble constant (H 0), matter (Omega 0m ), curvature (Omega 0k ) and vacuum (Omega 0 Lambda) densities of non-flat Lambda CDM model. We use 31 Hubble parameter values measured by differential ages (DA) technique in the redshift interval 0.07 <= z <= 1.965. We create an artificial neural network (ParamANN) and train it with simulated values of H(z) using various sets of H 0, Omega 0m , Omega 0k , Omega 0 Lambda parameters chosen from different and sufficiently wide prior intervals. We use a correlated noise model in the analysis. We demonstrate accurate validation and prediction using ParamANN. ParamANN provides an excellent cross-check for the validity of the Lambda CDM model. We obtain H 0 = 68.14 +/- 3.96 kmMpc-1s-1, Omega 0m = 0.3029 +/- 0.1118, Omega 0k = 0.0708 +/- 0.2527 and Omega 0 Lambda = 0.6258 +/- 0.1689 by using the trained network. These parameter values agree very well with the results of global CMB observations of the Planck collaboration. We compare the cosmological parameter values predicted by ParamANN with those obtained by the MCMC method. Both the results agree well with each other. This demonstrates that ParamANN is an alternative and complementary approach to the well-known Metropolis-Hastings algorithm for estimating the cosmological parameters by using Hubble measurements.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Using Neural Network to Model and Estimate PER in Vehicular Ad Hoc Network
    Alain Feukeu, Etienne
    Sumbwanyambe, Mbuyu
    IEEE ACCESS, 2024, 12 : 129623 - 129632
  • [22] Parameters identification of silo using neural network
    Dong, Qinghua
    Huang, Yi
    Zhendong yu Chongji/Journal of Vibration and Shock, 2006, 25 (02): : 83 - 87
  • [23] Optimisation of milling parameters using neural network
    Lipski, Jerzy
    Zaleski, Kazimierz
    II INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES'17), 2017, 15
  • [24] Analysis of Industrial Network Parameters Using Neural Network Processing
    Gibadullin, R. F.
    Lekomtsev, D., V
    Perukhin, M. Y.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2021, 48 (06) : 446 - 451
  • [25] Analysis of Industrial Network Parameters Using Neural Network Processing
    R. F. Gibadullin
    D. V. Lekomtsev
    M. Y. Perukhin
    Scientific and Technical Information Processing, 2021, 48 : 446 - 451
  • [27] APPLICATIONS OF NEURAL NETWORK AND NEURO-FUZZY NETWORK TO ESTIMATE THE PARAMETERS OF SELF-COMPACTING CONCRETE
    Nguyen, Cuong Hung
    Tran, Hoai
    INTERNATIONAL JOURNAL OF GEOMATE, 2023, 24 (106): : 120 - 129
  • [28] Estimate Permeability from Nuclear Magnetic Resonance Measurements Using Improved Artificial Neural Network Based On Genetic Algorithm
    Zhou, Yu
    Wei, Guoqi
    Guo, Hekun
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 5072 - +
  • [29] Development and implementation of neural network observers to estimate synchronous generators’ dynamic parameters using on-line operating data
    O. Shariati
    A. A. Mohd Zin
    A. Khairuddin
    M. R. Aghamohammadi
    Electrical Engineering, 2014, 96 : 45 - 54
  • [30] Development and implementation of neural network observers to estimate synchronous generators' dynamic parameters using on-line operating data
    Shariati, O.
    Zin, A. A. Mohd
    Khairuddin, A.
    Aghamohammadi, M. R.
    ELECTRICAL ENGINEERING, 2014, 96 (01) : 45 - 54