ParamANN: a neural network to estimate cosmological parameters for ΛCDM Universe using Hubble measurements

被引:0
|
作者
Pal, Srikanta [1 ]
Saha, Rajib [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal 462066, Madhya Pradesh, India
关键词
Hubble parameter; cosmological density parameters; machine learning; MCMC; BARYON ACOUSTIC-OSCILLATION; DARK ENERGY DYNAMICS; LUMINOUS RED GALAXIES; POWER SPECTRUM; SCALAR FIELD; H(Z) DATA; CONSTRAINTS; CONSTANT; SEPARATION;
D O I
10.1088/1402-4896/ad804d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we employ a machine learning (ML) approach for the estimations of four fundamental parameters, namely, the Hubble constant (H 0), matter (Omega 0m ), curvature (Omega 0k ) and vacuum (Omega 0 Lambda) densities of non-flat Lambda CDM model. We use 31 Hubble parameter values measured by differential ages (DA) technique in the redshift interval 0.07 <= z <= 1.965. We create an artificial neural network (ParamANN) and train it with simulated values of H(z) using various sets of H 0, Omega 0m , Omega 0k , Omega 0 Lambda parameters chosen from different and sufficiently wide prior intervals. We use a correlated noise model in the analysis. We demonstrate accurate validation and prediction using ParamANN. ParamANN provides an excellent cross-check for the validity of the Lambda CDM model. We obtain H 0 = 68.14 +/- 3.96 kmMpc-1s-1, Omega 0m = 0.3029 +/- 0.1118, Omega 0k = 0.0708 +/- 0.2527 and Omega 0 Lambda = 0.6258 +/- 0.1689 by using the trained network. These parameter values agree very well with the results of global CMB observations of the Planck collaboration. We compare the cosmological parameter values predicted by ParamANN with those obtained by the MCMC method. Both the results agree well with each other. This demonstrates that ParamANN is an alternative and complementary approach to the well-known Metropolis-Hastings algorithm for estimating the cosmological parameters by using Hubble measurements.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On direct estimation of density parameters and Hubble constant for ΛCDM universe using Hubble measurements
    Pal, Srikanta
    Saha, Rajib
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [2] Constraints on cosmological models from Hubble parameters measurements
    Zheng, Wei
    Li, Hong
    Xia, Jun-Qing
    Wan, You-Ping
    Li, Si-Yu
    Li, Mingzhe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (05):
  • [3] The acceleration of the Universe: Measurements of cosmological parameters from type Ia supernovae
    Goobar, A
    Perlmutter, S
    Aldering, G
    Goldhaber, G
    Knop, RA
    Nugent, P
    Castro, PG
    Deustua, S
    Fabbro, S
    Groom, DE
    Hook, IM
    Kim, AG
    Kim, MY
    Lee, JC
    Nunes, NJ
    Pain, R
    Pennypacker, CR
    Quimby, R
    Lidman, C
    Ellis, RS
    Irwin, M
    McMahon, RG
    Ruiz-Lapuente, P
    Walton, N
    Schaefer, B
    Boyle, BJ
    Filippenko, AV
    Matheson, T
    Fruchter, AS
    Panagia, N
    Newberg, HJM
    Couch, WJ
    PHYSICA SCRIPTA, 2000, T85 : 47 - 58
  • [4] Prospect for Cosmological Parameter Estimation Using Future Hubble Parameter Measurements
    Geng, Jia-Jia
    Guo, Rui-Yun
    Wang, An-Zhong
    Zhang, Jing-Fei
    Zhang, Xin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (04) : 445 - 450
  • [5] Prospect for Cosmological Parameter Estimation Using Future Hubble Parameter Measurements
    耿佳佳
    郭瑞芸
    王安忠
    张敬飞
    张鑫
    Communications in Theoretical Physics, 2018, 70 (10) : 445 - 450
  • [6] Likelihood-free Cosmological Constraints with Artificial Neural Networks: An Application on Hubble Parameters and SNe Ia
    Wang, Yu-Chen
    Xie, Yuan-Bo
    Zhang, Tong-Jie
    Huang, Hui-Chao
    Zhang, Tingting
    Liu, Kun
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 254 (02):
  • [7] A neural network applied to estimate Burr XII distribution parameters
    Abbasi, B.
    Hosseinifard, S. Z.
    Coit, D. W.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2010, 95 (06) : 647 - 654
  • [8] A new method to estimate cosmological parameters using the baryon fraction of clusters of galaxies
    Sasaki, S
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1996, 48 (06) : L119 - L122
  • [9] Optimization of Project Effort Estimate Using Neural Network
    Mukherjee, Soumyabrata
    Malu, Rajani Kanta
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 406 - 410
  • [10] Using the artificial neural network to estimate leaf area
    Shabani, Ali
    Ghaffary, Keramat Allah
    Sepaskhah, Ali Reza
    Kamgar-Haghighi, Ali Akbar
    SCIENTIA HORTICULTURAE, 2017, 216 : 103 - 110