Functional Connectivity Metrics in Temporal Lobe Epilepsy: A Machine Learning Perspective With MEG

被引:0
|
作者
Suhas, M. V. [1 ]
Mariyappa, N. [2 ,3 ]
Kotegar, A. Karunakar [4 ]
Chowdary, M. Ravindranadh [2 ]
Raghavendra, K. [2 ]
Asranna, Ajay [2 ]
Viswanathan, L. G. [2 ]
Anitha, H. [5 ]
Sinha, Sanjib [2 ,3 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci NIMHANS, Dept Neurol, Bengaluru 560029, India
[3] Natl Inst Mental Hlth & Neurosci NIMHANS, MEG Res Ctr, Bengaluru 560029, India
[4] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Data Sci & Comp Applicat, Manipal 576104, Karnataka, India
[5] Manipal Acad Higher Educ, Dept Comp Sci & Engn, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Amplitude envelope correlation; brain frequency bands; brain networks; classification; epilepsy diagnosis; graph theory; machine learning; magnetoencephalography; functional connectivity metrics; temporal lobe epilepsy; BRAIN; CHALLENGES; NETWORKS; REGIONS; EEG;
D O I
10.1109/ACCESS.2024.3502227
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temporal Lobe Epilepsy (TLE) is a prevalent neurological disorder affecting millions worldwide, including a significant proportion in India. Precise diagnosis and effective treatment planning are critical for TLE patients, necessitating advanced neuroimaging techniques. Magnetoencephalography (MEG) offers a non-invasive method for evaluating brain function, providing detailed insights into TLE. In this study, we aim to evaluate the potential of functional connectivity metrics derived from MEG data at the source level for distinguishing TLE patients from healthy controls (HCs). We analyse the data across various brain frequency bands, including alpha, beta, delta, gamma, theta, broadband, and high-frequency oscillations (HFO), using amplitude envelope correlation and graph theory metrics. We employ machine learning algorithms to classify TLE and HC groups based on these metrics. Chi2 feature importance analysis reveals significant importance of connectivity metrics such as local efficiency, mean clustering coefficient, mean shortest path length, small worldness score, weighted degree centrality, binary degree centrality, global efficiency across frequency bands, particularly in theta, alpha, beta, broadband and HFO bands. Various machine learning models demonstrate high classification performance, with accuracies reaching up to 100% in particular frequency bands in agreement with the Chi2 feature importance analysis. Overall, the Subspace Discriminant Ensemble model, especially in the Theta and Alpha frequency bands, show exceptional potential for classifying TLE and HCs. Overall, this study underscores the potential of MEG and functional connectivity analysis using specific frequency bands and machine learning models for classifying TLE and HC with high accuracy, which may contribute to improved diagnosis and management of epilepsy.
引用
收藏
页码:175091 / 175107
页数:17
相关论文
共 50 条
  • [31] ANTIEPILEPTIC MEDICATIONS MODULATE FUNCTIONAL CONNECTIVITY IN MESIAL TEMPORAL LOBE EPILEPSY
    Alves, K. F.
    Rezende, T. O. P.
    Figueiredo, D. B.
    Bellentani, F. F.
    Yamashita, S.
    Betting, L. E.
    EPILEPSIA, 2017, 58 : S126 - S126
  • [32] LATERALITY AND MEDICATION EFFECTS IN THE FUNCTIONAL CONNECTIVITY OF MESIAL TEMPORAL LOBE EPILEPSY
    Bellentani, F. F.
    Fujisao, E. K.
    Braga, A. S.
    Yamashita, S.
    Betting, L. E.
    EPILEPSIA, 2015, 56 : 77 - 78
  • [33] FUNCTIONAL AND STRUCTURAL CONNECTIVITY OF WORKING MEMORY NETWORKS IN TEMPORAL LOBE EPILEPSY
    Winston, G. P.
    Stretton, J.
    Sidhu, M. K.
    Vollmar, C.
    Symms, M.
    Thompson, P. J.
    Duncan, J.
    EPILEPSIA, 2012, 53 : 127 - 127
  • [34] FUNCTIONAL CONNECTIVITY STUDY IN PATIENTS WITH TEMPORAL LOBE EPILEPSY AND DEPRESSIVE SYMPTOMS
    Rocamora, R.
    Roe-Vellve, N.
    Vivanco-Hidalgo, R. M.
    Picado, M.
    Villoria, B.
    Merino, A.
    Garcia-Ribera, C.
    Bulbena, A.
    Vilarroya, O.
    EPILEPSIA, 2012, 53 : 59 - 59
  • [35] Altered Dynamic Functional Network Connectivity In Mesial Temporal Lobe Epilepsy
    Wu, W.
    Su, J.
    Zeng, L. -L.
    Xiao, B.
    Long, L.
    EPILEPSIA, 2019, 60 : 181 - 181
  • [36] Alterations in functional connectivity of the amygdala in unilateral mesial temporal lobe epilepsy
    Sarah D. Broicher
    Lars Frings
    Hans-Jürgen Huppertz
    Thomas Grunwald
    Martin Kurthen
    Günter Krämer
    Hennric Jokeit
    Journal of Neurology, 2012, 259 : 2546 - 2554
  • [37] Parcellation of the Hippocampus Using Resting Functional Connectivity in Temporal Lobe Epilepsy
    Barnett, Alexander J.
    Man, Vincent
    McAndrews, Mary Pat
    FRONTIERS IN NEUROLOGY, 2019, 10
  • [38] Left temporal lobe language network connectivity in temporal lobe epilepsy
    Trimmel, Karin
    van Graan, Andre L.
    Caciagli, Lorenzo
    Haag, Anja
    Koepp, Matthias J.
    Thompson, Pamela J.
    Duncan, John S.
    BRAIN, 2018, 141 : 2406 - 2418
  • [39] Structural Connectivity of Temporal Lobe Structures Detects Temporal Lobe Epilepsy
    Ghazi, Nayereh
    Soltanian-Zadeh, Hamid
    2016 23RD IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2016 1ST INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2016, : 25 - 29
  • [40] Comparison of MEG with invasive EEG in temporal lobe epilepsy
    Pataraia, E
    Castillo, EM
    Simos, PG
    Billingsley-Marshall, RL
    Sarkari, S
    Breier, JI
    Fitzgerald, M
    Papanicolaou, AC
    EPILEPSIA, 2005, 46 : 174 - 174