Functional Connectivity Metrics in Temporal Lobe Epilepsy: A Machine Learning Perspective With MEG

被引:0
|
作者
Suhas, M. V. [1 ]
Mariyappa, N. [2 ,3 ]
Kotegar, A. Karunakar [4 ]
Chowdary, M. Ravindranadh [2 ]
Raghavendra, K. [2 ]
Asranna, Ajay [2 ]
Viswanathan, L. G. [2 ]
Anitha, H. [5 ]
Sinha, Sanjib [2 ,3 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci NIMHANS, Dept Neurol, Bengaluru 560029, India
[3] Natl Inst Mental Hlth & Neurosci NIMHANS, MEG Res Ctr, Bengaluru 560029, India
[4] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Data Sci & Comp Applicat, Manipal 576104, Karnataka, India
[5] Manipal Acad Higher Educ, Dept Comp Sci & Engn, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Amplitude envelope correlation; brain frequency bands; brain networks; classification; epilepsy diagnosis; graph theory; machine learning; magnetoencephalography; functional connectivity metrics; temporal lobe epilepsy; BRAIN; CHALLENGES; NETWORKS; REGIONS; EEG;
D O I
10.1109/ACCESS.2024.3502227
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temporal Lobe Epilepsy (TLE) is a prevalent neurological disorder affecting millions worldwide, including a significant proportion in India. Precise diagnosis and effective treatment planning are critical for TLE patients, necessitating advanced neuroimaging techniques. Magnetoencephalography (MEG) offers a non-invasive method for evaluating brain function, providing detailed insights into TLE. In this study, we aim to evaluate the potential of functional connectivity metrics derived from MEG data at the source level for distinguishing TLE patients from healthy controls (HCs). We analyse the data across various brain frequency bands, including alpha, beta, delta, gamma, theta, broadband, and high-frequency oscillations (HFO), using amplitude envelope correlation and graph theory metrics. We employ machine learning algorithms to classify TLE and HC groups based on these metrics. Chi2 feature importance analysis reveals significant importance of connectivity metrics such as local efficiency, mean clustering coefficient, mean shortest path length, small worldness score, weighted degree centrality, binary degree centrality, global efficiency across frequency bands, particularly in theta, alpha, beta, broadband and HFO bands. Various machine learning models demonstrate high classification performance, with accuracies reaching up to 100% in particular frequency bands in agreement with the Chi2 feature importance analysis. Overall, the Subspace Discriminant Ensemble model, especially in the Theta and Alpha frequency bands, show exceptional potential for classifying TLE and HCs. Overall, this study underscores the potential of MEG and functional connectivity analysis using specific frequency bands and machine learning models for classifying TLE and HC with high accuracy, which may contribute to improved diagnosis and management of epilepsy.
引用
收藏
页码:175091 / 175107
页数:17
相关论文
共 50 条
  • [21] Resting state hippocampal functional connectivity in temporal lobe epilepsy
    Butler, Tracy
    Pan, H.
    Pavony, M.
    Xie, X. H.
    Ponticello, L.
    Kandula, P.
    Harden, C.
    Labar, D.
    Stern, E.
    Silbersweig, D.
    EPILEPSIA, 2007, 48 : 152 - 153
  • [22] Characterization of postsurgical functional connectivity changes in temporal lobe epilepsy
    Morgan, Victoria L.
    Rogers, Baxter P.
    Gonzalez, Hernan F. J.
    Goodale, Sarah E.
    Englot, Dario J.
    JOURNAL OF NEUROSURGERY, 2020, 133 (02) : 392 - 402
  • [23] Enhanced EEG functional connectivity in mesial temporal lobe epilepsy
    Bettus, Gaelle
    Wendling, Fabrice
    Guye, Maxime
    Valton, Luc
    Regis, Jean
    Chauvel, Patrick
    Bartolomei, Fabrice
    EPILEPSY RESEARCH, 2008, 81 (01) : 58 - 68
  • [24] Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics
    Camille Garcia-Ramos
    Veena Nair
    Rama Maganti
    Jedidiah Mathis
    Lisa L. Conant
    Vivek Prabhakaran
    Jeffrey R. Binder
    Beth Meyerand
    Bruce Hermann
    Aaron F. Struck
    Scientific Reports, 12
  • [25] Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics
    Garcia-Ramos, Camille
    Nair, Veena
    Maganti, Rama
    Mathis, Jedidiah
    Conant, Lisa L.
    Prabhakaran, Vivek
    Binder, Jeffrey R.
    Meyerand, Beth
    Hermann, Bruce
    Struck, Aaron F.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [26] MEG in the presurgical investigation of temporal lobe epilepsy
    Quesney, LF
    Ortiz, T
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2004, 21 (02) : 132 - 132
  • [27] Improving MEG resolution in temporal lobe epilepsy
    Quesney, LF
    Fernández, A
    Amo, C
    Maestú, F
    de Sola, RG
    Ortiz, T
    EPILEPSIA, 2003, 44 : 48 - 48
  • [28] Machine learning identifies “rsfMRI epilepsy networks” in temporal lobe epilepsy
    Rose Dawn Bharath
    Rajanikant Panda
    Jeetu Raj
    Sujas Bhardwaj
    Sanjib Sinha
    Ganne Chaitanya
    Kenchaiah Raghavendra
    Ravindranadh C. Mundlamuri
    Arivazhagan Arimappamagan
    Malla Bhaskara Rao
    Jamuna Rajeshwaran
    Kandavel Thennarasu
    Kaushik K. Majumdar
    Parthasarthy Satishchandra
    Tapan K. Gandhi
    European Radiology, 2019, 29 : 3496 - 3505
  • [29] Machine learning identifies "rsfMRI epilepsy networks" in temporal lobe epilepsy
    Bharath, Rose Dawn
    Panda, Rajanikant
    Raj, Jeetu
    Bhardwaj, Sujas
    Sinha, Sanjib
    Chaitanya, Ganne
    Raghavendra, Kenchaiah
    Mundlamuri, Ravindranadh C.
    Arimappamagan, Arivazhagan
    Rao, Malla Bhaskara
    Rajeshwaran, Jamuna
    Thennarasu, Kandavel
    Majumdar, Kaushik K.
    Satishchandra, Parthasarthy
    Gandhi, Tapan K.
    EUROPEAN RADIOLOGY, 2019, 29 (07) : 3496 - 3505
  • [30] Alterations in functional connectivity of the amygdala in unilateral mesial temporal lobe epilepsy
    Broicher, Sarah D.
    Frings, Lars
    Huppertz, Hans-Juergen
    Grunwald, Thomas
    Kurthen, Martin
    Kraemer, Guenter
    Jokeit, Hennric
    JOURNAL OF NEUROLOGY, 2012, 259 (12) : 2546 - 2554