Functional Connectivity Metrics in Temporal Lobe Epilepsy: A Machine Learning Perspective With MEG

被引:0
|
作者
Suhas, M. V. [1 ]
Mariyappa, N. [2 ,3 ]
Kotegar, A. Karunakar [4 ]
Chowdary, M. Ravindranadh [2 ]
Raghavendra, K. [2 ]
Asranna, Ajay [2 ]
Viswanathan, L. G. [2 ]
Anitha, H. [5 ]
Sinha, Sanjib [2 ,3 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, Karnataka, India
[2] Natl Inst Mental Hlth & Neurosci NIMHANS, Dept Neurol, Bengaluru 560029, India
[3] Natl Inst Mental Hlth & Neurosci NIMHANS, MEG Res Ctr, Bengaluru 560029, India
[4] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Data Sci & Comp Applicat, Manipal 576104, Karnataka, India
[5] Manipal Acad Higher Educ, Dept Comp Sci & Engn, Manipal Inst Technol, Manipal 576104, Karnataka, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Amplitude envelope correlation; brain frequency bands; brain networks; classification; epilepsy diagnosis; graph theory; machine learning; magnetoencephalography; functional connectivity metrics; temporal lobe epilepsy; BRAIN; CHALLENGES; NETWORKS; REGIONS; EEG;
D O I
10.1109/ACCESS.2024.3502227
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temporal Lobe Epilepsy (TLE) is a prevalent neurological disorder affecting millions worldwide, including a significant proportion in India. Precise diagnosis and effective treatment planning are critical for TLE patients, necessitating advanced neuroimaging techniques. Magnetoencephalography (MEG) offers a non-invasive method for evaluating brain function, providing detailed insights into TLE. In this study, we aim to evaluate the potential of functional connectivity metrics derived from MEG data at the source level for distinguishing TLE patients from healthy controls (HCs). We analyse the data across various brain frequency bands, including alpha, beta, delta, gamma, theta, broadband, and high-frequency oscillations (HFO), using amplitude envelope correlation and graph theory metrics. We employ machine learning algorithms to classify TLE and HC groups based on these metrics. Chi2 feature importance analysis reveals significant importance of connectivity metrics such as local efficiency, mean clustering coefficient, mean shortest path length, small worldness score, weighted degree centrality, binary degree centrality, global efficiency across frequency bands, particularly in theta, alpha, beta, broadband and HFO bands. Various machine learning models demonstrate high classification performance, with accuracies reaching up to 100% in particular frequency bands in agreement with the Chi2 feature importance analysis. Overall, the Subspace Discriminant Ensemble model, especially in the Theta and Alpha frequency bands, show exceptional potential for classifying TLE and HCs. Overall, this study underscores the potential of MEG and functional connectivity analysis using specific frequency bands and machine learning models for classifying TLE and HC with high accuracy, which may contribute to improved diagnosis and management of epilepsy.
引用
收藏
页码:175091 / 175107
页数:17
相关论文
共 50 条
  • [1] Machine Learning For Identifying Functional Connectivity MRI Alterations In Temporal Lobe Epilepsy
    Gholipour, T.
    You, X.
    Greve, D.
    Gaillard, W.
    Stufflebeam, S.
    EPILEPSIA, 2019, 60 : 94 - 94
  • [2] Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
    Fallahi, Alireza
    Pooyan, Mohammad
    Lotfi, Nastaran
    Baniasad, Fatemeh
    Tapak, Leili
    Mohammadi-Mobarakeh, Neda
    Hashemi-Fesharaki, Seyed Sohrab
    Mehvari-Habibabadi, Jafar
    Ay, Mohammad Reza
    Nazem-Zadeh, Mohammad-Reza
    NEUROLOGICAL SCIENCES, 2021, 42 (06) : 2379 - 2390
  • [3] Dynamic functional connectivity in temporal lobe epilepsy: a graph theoretical and machine learning approach
    Alireza Fallahi
    Mohammad Pooyan
    Nastaran Lotfi
    Fatemeh Baniasad
    Leili Tapak
    Neda Mohammadi-Mobarakeh
    Seyed Sohrab Hashemi-Fesharaki
    Jafar Mehvari-Habibabadi
    Mohammad Reza Ay
    Mohammad-Reza Nazem-Zadeh
    Neurological Sciences, 2021, 42 : 2379 - 2390
  • [4] MEG in temporal lobe epilepsy
    Pataraia, E
    Simos, PG
    Billingsley-Marshall, RL
    Castillo, EM
    Papanicolaou, AC
    EPILEPSIA, 2004, 45 : 15 - 15
  • [5] Subcortical functional connectivity gradients in temporal lobe epilepsy
    Lucas, Alfredo
    Mouchtaris, Sofia
    Cornblath, Eli J.
    Sinha, Nishant
    Caciagli, Lorenzo
    Hadar, Peter
    Gugger, James J.
    Das, Sandhitsu
    Stein, Joel M.
    Davis, Kathryn A.
    NEUROIMAGE-CLINICAL, 2023, 38
  • [6] Altered functional connectivity in mesial temporal lobe epilepsy
    Burianova, Hana
    Faizo, Nahla L.
    Gray, Marcus
    Hocking, Julia
    Galloway, Graham
    Reutens, David
    EPILEPSY RESEARCH, 2017, 137 : 45 - 52
  • [7] Functional connectivity of hippocampal networks in temporal lobe epilepsy
    Haneef, Zulfi
    Lenartowicz, Agatha
    Yeh, Hsiang J.
    Levin, Harvey S.
    Engel, Jerome, Jr.
    Stern, John M.
    EPILEPSIA, 2014, 55 (01) : 137 - 145
  • [8] EPISODIC MEMORY FUNCTIONAL CONNECTIVITY IN TEMPORAL LOBE EPILEPSY
    Buck, Sarah
    Caciagli, Lorenzo
    Vos, Sjoerd
    Duncan, John S.
    Sidhu, Meneka Kaur
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2019, 90 (12): : E40 - E40
  • [9] Reduced thalamocortical functional connectivity in temporal lobe epilepsy
    He, Xiaosong
    Doucet, Gaelle E.
    Sperling, Michael
    Sharan, Ashwini
    Tracy, Joseph I.
    EPILEPSIA, 2015, 56 (10) : 1571 - 1579
  • [10] Altered Directed-Connectivity Network in Temporal Lobe Epilepsy: A MEG Study
    Zhang, Chen
    Hu, Wenhan
    Wu, Yutong
    Li, Guangfei
    Yang, Chunlan
    Wu, Ting
    SENSORS, 2025, 25 (05)