Fractal dimension evolution of microcrack net in disordered materials

被引:0
|
作者
Politecnico di Torino, Torino, Italy [1 ]
机构
来源
Theor Appl Fract Mech | / 1卷 / [d]73-81期
关键词
Brittleness - Computer simulation - Crack propagation - Defects - Fractals - Geometry - Loads (forces);
D O I
暂无
中图分类号
学科分类号
摘要
Fractal geometry is used to evaluate the degree of disorder of crack size distribution in brittle damaging materials. The fractal dimension of the 2D microcrack net turns out to increase from one to two during the loading process and microcrack propagation. This means that the material becomes more disordered with the damage evolution. The longer cracks, in fact, propagate more rapidly than the shorter and, at the same time, the crack size distribution increases its statistical dispersion. Some numerical examples, related to different initial microcrack densities and size distributions, are illustrated with the computer simulation of the system evolution.
引用
收藏
相关论文
共 50 条
  • [21] Universality and specificity of fractal dimension of fractured surfaces in materials
    Lung, CW
    Wang, SG
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2000, 16 (01) : 1 - 4
  • [22] Influence of the fractal dimension on the mechanical properties of granular materials
    Bachir, Melbouci
    Saliha, Yezli
    BEHAVIOUR OF MATERIALS, 2013, 550 : 99 - 106
  • [23] A FRACTAL DIMENSION METHOD FOR CHARACTERIZING WNIFE PRESINTERED MATERIALS
    MARCHIONNI, C
    CHAIX, JM
    METALLOGRAPHY, 1988, 21 (04): : 377 - 389
  • [24] Fractal dimension analysis of polyacenic semiconductive (PAS) materials
    Tanaka, K
    Ito, A
    Yoshii, T
    Suehiro, S
    Nagura, S
    Ando, N
    Hato, Y
    CARBON, 2001, 39 (10) : 1599 - 1603
  • [25] Study on surface fractal dimension of functionally gradient materials
    Wang, Lu
    Li, Xue-Li
    Wang, Fu-Chi
    Liu, Guo-Quan
    Cailiao Gongcheng/Journal of Materials Engineering, 2001, (11):
  • [26] Universality and Specificity of Fractal Dimension of Fractured Surfaces in Materials
    Chiwei LUNG and Shenggang WANG (International Centre for Materials Physics
    JournalofMaterialsScience&Technology, 2000, (01) : 1 - 4
  • [27] Universality and specificity of fractal dimension of fractured surfaces in materials
    Lung, Chiwei
    Wang, Shenggang
    Journal of Materials Science and Technology, 2000, 16 (01): : 1 - 4
  • [28] The Minkowski dimension and critical effects in fractal evolution of defects
    Cetera, A
    CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 475 - 482
  • [29] Entropy production: evolution criteria, robustness and fractal dimension
    Betancourt-Mar, J. A.
    Rodriguez-Ricard, M.
    Mansilla, R.
    Cocho, G.
    Nieto-Villar, J. M.
    REVISTA MEXICANA DE FISICA, 2016, 62 (02) : 164 - 167
  • [30] Grammatical evolution to design fractal curves with a given dimension
    Ortega, A
    Dalhoum, AA
    Alfonseca, M
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (04) : 483 - 493