Entropy production: evolution criteria, robustness and fractal dimension

被引:0
|
作者
Betancourt-Mar, J. A. [1 ]
Rodriguez-Ricard, M. [2 ]
Mansilla, R. [3 ]
Cocho, G. [4 ]
Nieto-Villar, J. M. [1 ,5 ,6 ]
机构
[1] Mexican Inst Complex Syst, Tamaulipas, Mexico
[2] Univ La Habana, Fac Matemat & Comp, Dept Ecuac Diferenciales, Havana 10400, Cuba
[3] Univ Nacl Autonoma Mexico, Ctr Invest Interdisciplinarias Ciencias & Humanid, Mexico City 04510, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Dept Sistemas Complejos, Inst Fis, Mexico City 04510, DF, Mexico
[5] Univ Havana, Fac Chem, MV Lomonosov Chem Div, Dept Chem Phys, Havana 10400, Cuba
[6] Univ Havana, Fac Phys, H Poincare Grp Complex Syst, Havana 10400, Cuba
关键词
Irreversible thermodynamics; complex systems; fractal dimension; CHAOS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was proved through Rossler model, where the funnel case is more robust tan spiral chaos, the entropy production per unit time is a Lyapunov's function on the space of the control system parameters. It was established the conjecture of entropy production fractal dimension. The current theoretical framework will hopefully provide a better understanding of the relationship between thermodynamics and nonlinear dynamics and contribute to unify theses through complex systems theory.
引用
收藏
页码:164 / 167
页数:4
相关论文
共 50 条
  • [1] Property of robustness to size and its realization on fractal dimension
    Peng, Hua-Rong
    Li, Lei
    Wang, Qiong-Hua
    OPTIK, 2014, 125 (09): : 2205 - 2209
  • [2] ON THE CORRELATION BETWEEN FRACTAL DIMENSION AND ROBUSTNESS OF COMPLEX NETWORKS
    Wu, Yipeng
    Chen, Zhilong
    Yao, Kui
    Zhao, Xudong
    Chen, Yicun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [3] FRACTAL DIMENSION AND METRIC ENTROPY IN EXTENDED SYSTEMS
    CILIBERTO, S
    EUROPHYSICS LETTERS, 1987, 4 (06): : 685 - 690
  • [4] Fractal dimension and scale entropy applications in a spray
    Le Moyne, L.
    Freire, V.
    Conde, D. Queiros
    CHAOS SOLITONS & FRACTALS, 2008, 38 (03) : 696 - 704
  • [5] Neural network for fractal dimension evolution
    Oliveira, Alessandra da Silva
    Lopes, Veronica dos Santos
    Coutinho Filho, Ubirajara
    Moruzzi, Rodrigo Braga
    de Oliveira, Andre Luiz
    WATER SCIENCE AND TECHNOLOGY, 2018, 78 (04) : 795 - 802
  • [6] Attribute Reduction Based on Fractal Dimension and Joint Entropy
    Li, Hong-qi
    Xu, Qing-song
    Zhu, Li-ping
    Yang, Zhong-guo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (AISE 2014), 2014, : 350 - 354
  • [7] Nonextensive Entropy of Quantum Liquid in Fractal Dimension Space
    Tayurskii, D. A.
    Lysogorskii, Yu. V.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 158 (1-2) : 237 - 243
  • [8] Nonextensive Entropy of Quantum Liquid in Fractal Dimension Space
    D. A. Tayurskii
    Yu. V. Lysogorskii
    Journal of Low Temperature Physics, 2010, 158 : 237 - 243
  • [9] Approximate dimension applied to criteria for monogenicity on fractal domains
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Kats, Boris A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04): : 529 - 544
  • [10] Approximate dimension applied to criteria for monogenicity on fractal domains
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Boris A. Kats
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 529 - 544