Micro-end-milling - III. Wear estimation and tool breakage detection using acoustic emission signals

被引:0
|
作者
Tansel, I. [1 ]
Trujillo, M. [1 ]
Nedbouyan, A. [1 ]
Velez, C. [1 ]
Bao, Wei-Yu [1 ]
Arkan, T.T. [1 ]
Tansel, B. [1 ]
机构
[1] Florida Int Univ, Miami, United States
关键词
Number:; -; Acronym:; NSF; Sponsor: National Science Foundation; FIU; Sponsor: Florida International University;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1449 / 1466
相关论文
共 50 条
  • [31] Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision
    Zhang, Xianghui
    Yu, Haoyang
    Li, Chengchao
    Yu, Zhanjiang
    Xu, Jinkai
    Li, Yiquan
    Yu, Huadong
    MICROMACHINES, 2023, 14 (01)
  • [32] A DYNAMIC-MODEL FOR TOOL WEAR DETECTION USING ACOUSTIC-EMISSION
    HOUSHMAND, AA
    KANNATEYASIBU, E
    HERRIN, GD
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1995, 9 (04) : 415 - 428
  • [33] On-chip tool wear estimation in micro-milling using artificial neural network
    Saha, Onkita
    Bhattacharjee, Bidrohi
    Sadhu, Pradip Kumar
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2025,
  • [34] The On-Line Tool Fracture Detection in Turning Using Acoustic Emission Signals
    Yalcin, Gokhan
    Saglam, Haci
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2007, 10 (02): : 155 - 162
  • [35] TOOL WEAR ESTIMATION IN DRILLING USING ACOUSTIC EMISSION SIGNAL BY MULTIPLE REGRESSION AND GMDH
    Sudev, L. J.
    Ravindra, H. V.
    IMECE 2008: MECHANICAL SYSTEMS AND CONTROL, VOL 11, 2009, : 97 - 106
  • [36] Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling
    Kothuru, Achyuth
    Nooka, Sai Prasad
    Liu, Rui
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 95 (9-12): : 3797 - 3808
  • [38] Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling
    Ding, Hui
    Ibrahim, Rasidi
    Cheng, Kai
    Chen, Shi-Jin
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2010, 50 (12): : 1115 - 1118
  • [39] Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling
    Achyuth Kothuru
    Sai Prasad Nooka
    Rui Liu
    The International Journal of Advanced Manufacturing Technology, 2018, 95 : 3797 - 3808
  • [40] ACOUSTIC-EMISSION MONITORING OF WOOD CUTTING .1. DETECTION OF TOOL WEAR BY AE SIGNALS
    MURASE, Y
    IKE, K
    MORI, M
    MOKUZAI GAKKAISHI, 1988, 34 (03): : 207 - 213