Micro-end-milling - III. Wear estimation and tool breakage detection using acoustic emission signals

被引:0
|
作者
Tansel, I. [1 ]
Trujillo, M. [1 ]
Nedbouyan, A. [1 ]
Velez, C. [1 ]
Bao, Wei-Yu [1 ]
Arkan, T.T. [1 ]
Tansel, B. [1 ]
机构
[1] Florida Int Univ, Miami, United States
关键词
Number:; -; Acronym:; NSF; Sponsor: National Science Foundation; FIU; Sponsor: Florida International University;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1449 / 1466
相关论文
共 50 条
  • [21] Acoustic emission monitoring of tool wear in end-milling using time-domain averaging
    Hutton, DV
    Hu, F
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 1999, 121 (01): : 8 - 12
  • [22] End milling tool breakage detection using lifting scheme and Mahalanobis distance
    Cao, Hongrui
    Chen, Xuefeng
    Zi, Yanyang
    Ding, Feng
    Chen, Huaxin
    Tan, Jiyong
    He, Zhengjia
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2008, 48 (02): : 141 - 151
  • [23] A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals
    Lopes da Silva, Rodrigo Henriques
    da Silva, Marcio Bacci
    Hassui, Amauri
    MACHINING SCIENCE AND TECHNOLOGY, 2016, 20 (03) : 386 - 405
  • [24] Dynamic model for tool wear detection using acoustic emission
    Houshmand, A.A.
    Kannatey-Asibu, E. Jr.
    Herrin, G.D.
    Mechanical Systems & Signal Processing, 1995, 9 (04):
  • [25] Identification of tool wear status and correlation of chip morphology in micro-end milling of mild steel (SAE 1017) using acoustic emission signal
    Prakash, M.
    Kanthababu, M.
    Kumar, A. Arul Jeya
    Arun, N.
    Venkadesan, V. Prasanna
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [26] Tool Wear Estimation and Visualization Using Image Sensors in Micro Milling Manufacturing
    Fernandez-Robles, Laura
    Charro, Noelia
    Sanchez-Gonzalez, Lidia
    Perez, Hilde
    Castejon-Limas, Manuel
    Alfonso-Cendon, Javier
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 399 - 410
  • [27] Estimation of minimum chip thickness in micro-milling using acoustic emission
    Mian, A. J.
    Driver, N.
    Mativenga, P. T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2011, 225 (B9) : 1535 - 1551
  • [28] Assessment of tool wear in milling using acoustic emission detected by a fiber optic interferometer
    Carolan, TA
    Hand, DP
    Barton, JS
    Jones, JDC
    Wilkinson, P
    Reuben, RL
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 1996, 118 (03): : 428 - 433
  • [29] Detection of tool flute breakage in end milling using feed-motor current signatures
    Li, XL
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2001, 6 (04) : 491 - 498
  • [30] Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling
    Sio-Sever, Andres
    Lopez, Juan Manuel
    Asensio-Rivera, Cesar
    Vizan-Idoipe, Antonio
    de Arcas, Guillermo
    SENSORS, 2022, 22 (10)