Weak solution of incompressible Euler equations with decreasing energy

被引:0
|
作者
Shnirelman, A.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Existence of a weak solution for fractional Euler-Lagrange equations
    Bourdin, Loic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 239 - 251
  • [32] From quantum Euler-Maxwell equations to incompressible Euler equations
    Yang, Jianwei
    Ju, Zhiping
    APPLICABLE ANALYSIS, 2015, 94 (11) : 2201 - 2210
  • [33] Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces
    De Rosa, Luigi
    Inversi, Marco
    Stefani, Giorgio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 : 833 - 861
  • [34] Convergence of compressible Euler-Maxwell equations to incompressible euler equations
    Peng, Yue-Jun
    Wang, Shu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) : 349 - 376
  • [35] Weak vorticity formulation of the incompressible 2D Euler equations in bounded domains
    Iftimie, D.
    Lopes Filho, M. C.
    Nussenzveig Lopes, H. J.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (02) : 109 - 145
  • [36] Axisymmetric weak solutions of the 3-D Euler equations for incompressible fluid flows
    Chae, D
    Kim, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (12) : 1393 - 1404
  • [37] On derivation of Euler-Lagrange equations for incompressible energy-minimizers
    Chaudhuri, Nirmalendu
    Karakhanyan, Aram L.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) : 627 - 645
  • [38] Incompressible limit of Euler equations with damping
    Shi, Fei
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 126 - 139
  • [39] Statistical solutions of the incompressible Euler equations
    Lanthaler, S.
    Mishra, S.
    Pares-Pulido, C.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (02): : 223 - 292
  • [40] VARIATIONAL MODELS FOR INCOMPRESSIBLE EULER EQUATIONS
    Ambrosio, Luigi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01): : 1 - 10