Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces

被引:2
|
作者
De Rosa, Luigi [1 ]
Inversi, Marco [1 ]
Stefani, Giorgio [2 ]
机构
[1] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[2] Scuola Int Super Studi Avanzati SISSA, via Bonomea 265, I-34136 Trieste, TS, Italy
基金
欧洲研究理事会;
关键词
Euler equations; Weak-strong uniqueness; Inviscid limit; Orlicz spaces; INVISCID LIMIT; FLUID;
D O I
10.1016/j.jde.2023.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:833 / 861
页数:29
相关论文
共 50 条