Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces

被引:2
|
作者
De Rosa, Luigi [1 ]
Inversi, Marco [1 ]
Stefani, Giorgio [2 ]
机构
[1] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[2] Scuola Int Super Studi Avanzati SISSA, via Bonomea 265, I-34136 Trieste, TS, Italy
基金
欧洲研究理事会;
关键词
Euler equations; Weak-strong uniqueness; Inviscid limit; Orlicz spaces; INVISCID LIMIT; FLUID;
D O I
10.1016/j.jde.2023.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:833 / 861
页数:29
相关论文
共 50 条
  • [31] Weak-strong uniqueness property for the magnetohydrodynamic equations of three-dimensional compressible isentropic flows
    Yang, Yong-Fu
    Dou, Changsheng
    Ju, Qiangchang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 23 - 30
  • [32] Weak entropy solutions to a model in induction hardening, existence and weak-strong uniqueness
    Homberg, Dietmar
    Lasarzik, Robert
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (09): : 1867 - 1918
  • [33] Measure-Valued Solutions and Weak-Strong Uniqueness for the Incompressible Inviscid Fluid-Rigid Body Interaction
    Caggio, Matteo
    Kreml, Ondrej
    Necasova, Sarka
    Roy, Arnab
    Tang, Tong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [34] Compressible Fluids Interacting with Plates: Regularity and Weak-Strong Uniqueness
    Srđan Trifunović
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [35] Weak-strong uniqueness for energy-reaction-diffusion systems
    Hopf, Katharina
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (05): : 1015 - 1069
  • [36] WEAK-STRONG UNIQUENESS OF HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS
    Zhao, Ji-hong
    Liu, Qiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [37] Weak-strong uniqueness for the mean curvature flow of double bubbles
    Hensel, Sebastian
    Laux, Tim
    INTERFACES AND FREE BOUNDARIES, 2023, 25 (01) : 37 - 107
  • [38] On weak-strong uniqueness property for full compressible magnetohydrodynamics flows
    Yan, Weiping
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (11): : 2005 - 2019
  • [39] Weak-strong uniqueness property for the compressible flow of liquid crystals
    Yang, Yong-Fu
    Dou, Changsheng
    Ju, Qiangchang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) : 1233 - 1253
  • [40] Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system
    Pierre Germain
    Journal d'Analyse Mathématique, 2008, 105 : 169 - 196