Solve for energy spectrum and function of ring-shaped oscillator by using supersymmetry and shape invariance

被引:0
|
作者
Wang, Deyun [1 ]
Huang, Bowen [1 ]
机构
[1] Phys. Dept. Cap. Normal University, Beijing 100037, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A ring-shaped travelling-wave open resonator as part of the diffraction radiation oscillator
    Skrynnik, BK
    Miroshnichenko, BS
    Melezhik, PN
    Senkevich, YB
    MSMW'04: FIFTH INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER, AND SUBMILLIMETER WAVES, SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2004, : 480 - 482
  • [42] Quesne-like ring-shaped spherical harmonic oscillator potential and pseudospin symmetry
    Zhang Min-Cang
    ACTA PHYSICA SINICA, 2009, 58 (02) : 712 - 716
  • [43] Relativistic solutions for double ring-shaped oscillator potential via asymptotic iteration method
    Yasuk, F.
    Durmus, A.
    PHYSICA SCRIPTA, 2008, 77 (01)
  • [44] Modeling and improvement for the thermal stability of ring-shaped workpieces with shape boundary constraints
    Wang, Yong-Jun
    Li, Rui-Jun
    Zhao, Liang
    Yao, Pan
    Xu, Peng
    Ma, Shao-Hua
    Cheng, Zhen-Ying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [45] DETECTION AND SEPARATION OF RING-SHAPED CLUSTERS USING FUZZY CLUSTERING
    MAN, Y
    GATH, I
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (08) : 855 - 861
  • [46] Mechanism of excitation energy transfer between ring-shaped aggregates of pigments
    Nakatani, Masatoshi
    Tei, Go
    Ishihara, Hajime
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (02): : 448 - 451
  • [47] Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential
    胡先权
    罗光
    毋志民
    牛连斌
    马燕
    Communications in Theoretical Physics, 2010, 53 (02) : 242 - 246
  • [48] TOPOLOGY AND PERIODIC ORBITS OF RING-SHAPED POTENTIALS AS A GENERALIZED 4-D ISOTROPIC OSCILLATOR
    Balsas, M. C.
    Ferrer, S.
    Jimenez, E. S.
    Vera, J. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2809 - 2821
  • [49] Quasi-exactly solvable Schrodinger equation for a modified ring-shaped harmonic oscillator potential
    Bousafsaf, Issam
    Boudjedaa, Badredine
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (08):
  • [50] Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential
    Hu Xian-Quan
    Luo Guang
    Wu Zhi-Min
    Niu Lian-Bin
    Ma Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (02) : 242 - 246