TOPOLOGY AND PERIODIC ORBITS OF RING-SHAPED POTENTIALS AS A GENERALIZED 4-D ISOTROPIC OSCILLATOR

被引:0
|
作者
Balsas, M. C. [1 ]
Ferrer, S. [2 ]
Jimenez, E. S. [1 ]
Vera, J. A. [3 ]
机构
[1] Univ Politecn Cartagena Murcia, Murcia, Spain
[2] Univ Murcia, E-30001 Murcia, Spain
[3] Ctr Univ Def MDE UPCT, Murcia 30720, Spain
来源
关键词
Hamiltonian system; generalized 4-D isotropic oscillator; ring-shaped potentials; Liouville-Arnold theorem; periodic orbits; PHASE PORTRAITS; MOTION;
D O I
10.1142/S0218127410027374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study a generalized integrable biparametric family of 4-D isotropic oscillators. This family allows to treat, in a unified way, oscillators defined by the potentials given by Hartmann and Quesne and other ring-shaped systems. Using the Liouville-Arnold theorem and the analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. By this topological study and the calculation of the action-angle variables we obtain the full classification of periodic and quasiperiodic orbits for this system.
引用
收藏
页码:2809 / 2821
页数:13
相关论文
共 15 条