On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian

被引:0
|
作者
Morosi, C. [1 ]
Tondo, G. [2 ,3 ]
机构
[1] Dipartimento di Matematica, Politecnico di Milano, Piazza L. Da Vinci 32, I-20133 Milano, Italy
[2] Dept. of Appl. Mathematical Studies, University of Leeds, Leeds LS2 9JT, United Kingdom
[3] Dipartimento di Scienze Matematiche, Univ. degli Studi di Trieste, Piaz.le Europa 1, I-34127 Trieste, Italy
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:59 / 64
相关论文
共 50 条
  • [41] Bi-Hamiltonian Structures of 3D Chaotic Dynamical Systems
    Esen, Ogul
    Choudhury, Anindya Ghose
    Guha, Partha
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (13):
  • [42] Non-Pfaffian quasi-bi-Hamiltonian systems with two degrees of freedom
    Rabenivo, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (34): : 7113 - 7120
  • [43] Dynamical symmetries, bi-Hamiltonian structures, and superintegrable n=2 systems
    Rañada, MF
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 2121 - 2134
  • [44] Nonlinear bi-Hamiltonian dynamical systems: Current Lie algebraic approach
    Szum, A
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 261 - 268
  • [45] About the separability of completely integrable quasi-bi-Hamiltonian systems with compact levels
    Boualem, H.
    Brouzet, R.
    Rakotondralambo, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) : 583 - 591
  • [46] A new type of energy-preserving integrators for quasi-bi-Hamiltonian systems
    Liu, Kai
    Fu, Ting
    Shi, Wei
    Zhou, Xuhuan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (07) : 1667 - 1681
  • [47] Integrable bi-Hamiltonian systems of hydrodynamic type
    Mikhov, OI
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 153 - 154
  • [48] Bi-Hamiltonian structures and singularities of integrable systems
    A. V. Bolsinov
    A. A. Oshemkov
    Regular and Chaotic Dynamics, 2009, 14 : 431 - 454
  • [49] Bi-Hamiltonian structures and singularities of integrable systems
    Bolsinov, A. V.
    Oshemkov, A. A.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (4-5): : 431 - 454
  • [50] Extending Hamiltonian operators to get bi-Hamiltonian coupled KdV systems
    Ma, WX
    Pavlov, M
    PHYSICS LETTERS A, 1998, 246 (06) : 511 - 522