About the separability of completely integrable quasi-bi-Hamiltonian systems with compact levels

被引:4
|
作者
Boualem, H. [1 ]
Brouzet, R. [1 ,2 ]
Rakotondralambo, J. [3 ]
机构
[1] Univ Montpellier 2, CNRS, I3M, UMR 5149, F-34095 Montpellier 5, France
[2] Univ Nimes, EMIAN, F-30021 Nimes 1, France
[3] Univ Antananarivo, Fac Sci, Dept Math & Informat, Antananarivo, Madagascar
关键词
Bi-Hamiltonian systems; Quasi-bi-Hamiltonian systems; Action-angle coordinates; Liouville torus; Arnold-Liouville integrability; omega N-manifolds; Separability;
D O I
10.1016/j.difgeo.2008.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We Study completely integrable quasi-bi-Hamiltonian systems whose common level surfaces are compact and prove in particular their separability in the sense of Falqui and Pedroni. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 591
页数:9
相关论文
共 50 条
  • [1] Quasi-bi-Hamiltonian systems and separability
    Morosi, C
    Tondo, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08): : 2799 - 2806
  • [2] Families of quasi-bi-Hamiltonian systems and separability
    Zeng, YB
    Ma, WX
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4452 - 4473
  • [3] Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
    Tondo, G
    Morosi, C
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 255 - 266
  • [4] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C.
    Tondo, G.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247 (1-2): : 59 - 64
  • [5] Quasi-bi-Hamiltonian systems: Why the pfaffian case?
    Boualem, H.
    Brouzet, R.
    Rakotondralambo, J.
    PHYSICS LETTERS A, 2006, 359 (06) : 559 - 563
  • [6] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R
    Caboz, R
    Rabenivo, J
    Ravoson, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2069 - 2076
  • [7] On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian
    Morosi, C
    Tondo, G
    PHYSICS LETTERS A, 1998, 247 (1-2) : 59 - 64
  • [8] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R.
    Caboz, R.
    Rabenivo, J.
    Ravoson, V.
    Journal of Physics A: Mathematical and General, 29 (09):
  • [9] Projectively Equivalent Riemannian Spaces as Quasi-bi-Hamiltonian Systems
    M. Crampin
    Acta Applicandae Mathematica, 2003, 77 : 237 - 248
  • [10] Quasi-Bi-Hamiltonian Systems Obtained from Constrained Flows
    Yunbo Zeng
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 300 - 304